首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   1篇
  53篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   4篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
排序方式: 共有53条查询结果,搜索用时 0 毫秒
1.
The characteristic aroma compounds of Citrus natsudaidai Hayata essential oil were evaluated by a combination of instrumental and sensory methods. Sixty compounds were identified and quantified, accounting for 94.08% of the total peel oil constituents. Limonene was the most abundant compound (80.68%), followed by gamma-terpinene (5.30%), myrcene (2.25%) and alpha-pinene (1.30%). Nineteen compounds which could not be identified in the original oil were identified in the oxygenated fraction. Myrcene, linalool, alpha-pinene, beta-pinene, limonene, nonanal, gamma-terpinene, germacrene D, and perillyl alcohol were the active aroma components (FD-factor > 3(6)), whereas beta-copaene, cis-sabinene hydrate and 1-octanol were suggested as characteristic aroma compounds, having a Natsudaidai-like aroma in the GC effluent. Three other compounds, heptyl acetate, (E)-limonene oxide and 2,3-butanediol, which each showed a high RFA value (>35) were considered to be important in the reconstruction of the original Natsudaidai oil from pure odor chemicals. The results indicate that 1-octanol was the aroma impact compound of C. natsudaidai Hayata peel oil.  相似文献   
2.
3.
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory.  相似文献   
4.
Numerous cytoplasmic adaptor proteins, including JIP1, FE65, and X11alpha, affect amyloid precursor protein (APP) processing and Abeta production. Dab1 is another adaptor protein that interacts with APP as well as with members of the apoE receptor family. We examined the effect of Dab1 on APP and apoEr2 processing in transfected cells and primary neurons. Dab1 interacted with APP and apoEr2 and increased levels of their secreted extracellular domains and their cytoplasmic C-terminal fragments. These effects depended on the NPXY domains of APP and apoEr2 and on the phosphotyrosine binding domain of Dab1 but did not depend on phosphorylation of Dab1. Dab1 decreased the levels of APP beta-C-terminal fragment and secreted Abeta. Full-length Dab1 or its phosphotyrosine binding domain alone increased surface levels of APP, as determined by surface protein biotinylation and live cell staining. A ligand for apoEr2, the extracellular matrix protein Reelin, significantly increased the interaction of apoEr2 with Dab1. Surprisingly, we also found that Reelin treatment significantly increased the interaction of APP and Dab1. Moreover, Reelin treatment increased cleavage of APP and apoEr2 and decreased production of the beta-C-terminal fragment of APP and Abeta. Together, these data suggest that Dab1 alters trafficking and processing of APP and apoEr2, and this effect is influenced by extracellular ligands.  相似文献   
5.
Phage libraries displaying cDNA or random peptides have been used for profiling autoantibodies in cancer. The detection of autoantibodies in human sera using phages displaying specific epitopes is usually performed by phage-immobilized ELISAs which can detect specific antibodies without identification of whole antigens. However, these ELISAs can give feeble detection signals that are indistinguishable from background signals which are caused by human sera. To improve the usefulness of phage ELISA for human sera, the conditions for each step in phage ELISA were optimized. The antigenicity of phage antigens was maximal when using coating buffer of neutral pH. By using protein-free blocking buffer and pre-adsorbing human sera with phage host cell ER2738 extracts significantly decreased non-specific signals. Finally, when these conditions were applied to phage ELISA using K10P1, the values of the negative controls were concentrated near cutoff values, which made the assay more reliable. The optimized phage ELISA conditions described here would increase the efficacy of detection specific autoantibodies in human sera.  相似文献   
6.
    
ASchizosaccharomyces pombe homolog of mammalian genes encoding G protein subunits,gpb1 +, was cloned by the polymerase chain reaction using primer pairs that correspond to sequences conserved in several G genes of other species followed by screening of genomic and cDNA libraries. Thegpb1 gene encodes 317 amino acids that show 47% homology with human G 1 and G 2 and 40% homology withSaccharomyces cerevisiae G protein. Disruption of thegpb1 gene indicated that this gene is not required for vegetative cell growth. However,gpb1-disrupted haploid cells mated and sporulated faster than wild-type cells, both in sporulation (MEA) and in complex medium (YE): when examined 23 h after transfer to sporulation medium, 35% ofgpb1-disrupted haploid pairs had undergone conjugation and sporulation, whereas only 3–5% of wild-type haploid pairs had done so. Overexpression of thegpb1 gene suppressed this facilitated conjugation and sporulation phenotype ofgpb1-disrupted cells but did not cause any obvious effect in wild-type cells. Co-disruption of one of the twoS. pombe G-subunit genes,gpa2, in thegpb1-disrupted cells did not change the accelerated conjugation and sporulation phenotype of thegpb1 cells. However, co-disruption of theras1 gene abolished thegpb1 phenotype. These results suggest that Gpbl is a negative regulator of conjugation and sporulation that apparently works upstream of Ras1 function inS. pombe. The possible relationship of Gpbl to two previously identified, putative G proteins ofS. pombe is discussed.A preliminary report of this work first appeared in an abstract of the Genetic Society of America, 1993 Yeast Genetics and Molecular Biology Meeting, p. 92 and was presented at the American Association of Cancer special meeting on Cell Signalling and Cancer Treatment, 1993  相似文献   
7.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   
8.
The adaptor protein FE65 interacts with the beta-amyloid precursor protein (APP) via its C-terminal phosphotyrosine binding (PTB) domain and affects APP processing and Abeta production. Our previous data demonstrate that the apoE receptor ApoEr2 co-precipitated with APP and suggest that there are extracellular and intracellular interactions between these two transmembrane proteins. We hypothesized that FE65 acts as an intracellular link between ApoEr2 and APP. Co-immunoprecipitation experiments in COS7 cells demonstrated an interaction between ApoEr2 and FE65 that depended on the N-terminal PTB domain of FE65. Full-length FE65 increased co-immunoprecipitation of ApoEr2 and APP. Full-length FE65 also increased surface expression of ApoEr2, as determined by surface protein biotinylation and live cell surface staining. Constructs containing both the C- and N-terminal PTB domains of FE65 increased secreted APP, secreted ApoEr2, APP C-terminal fragment, and ApoEr2 C-terminal fragment, but constructs containing only single PTB domains did not affect APP or ApoEr2 processing. In addition, full-length FE65 decreased Abeta to a significantly greater extent than individual FE65 domains. These data suggest that FE65 can bind APP and ApoEr2 at the same time and affect the processing of each.  相似文献   
9.
In our previous studies we showed that apoE treatment of neurons activated ERK 1/2 signaling, and activation was blocked by treatment with inhibitors of the low density lipoprotein receptor family, the N-methyl-d-aspartate (NMDA) receptor antagonist MK 801, and calcium channel blockers. We hypothesized an interaction between the low density lipoprotein receptor family members and the NMDA receptor. In the present study, we confirmed through co-immunoprecipitation experiments an interaction between the apoE receptor, ApoEr2, and NMDAR1 through their extracellular domains. We also found that the PDZ1 domain of PSD95, a postsynaptic scaffolding protein, interacted with the C terminus of ApoEr2 via an alternatively spliced, intracellular exon. This interaction between ApoEr2 and PSD95 in neurons was modulated by NMDA receptor activation and an ApoEr2 ligand. We also found that the PDZ2 domain of PSD95 interacted with the NR2A and NR2B subunits of NMDA receptors. Full-length PSD95 increased cell surface levels of ApoEr2 and its cleavage, resulting in increases in secreted ApoEr2 and C-terminal fragments of ApoEr2. These studies suggest that ApoEr2 can form a multiprotein complex with NMDA receptor subunits and PSD95.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号