首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   5篇
  国内免费   8篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   10篇
  2014年   9篇
  2013年   9篇
  2012年   11篇
  2011年   16篇
  2010年   2篇
  2009年   11篇
  2008年   9篇
  2007年   6篇
  2006年   11篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  1999年   1篇
排序方式: 共有135条查询结果,搜索用时 31 毫秒
1.
Lipid peroxidation has been implicated in the pathophysiological sequelae of human neurodegenerative disorders. It is recognized that quantification of lipid peroxidation is best assessed in vivo by measuring a series of prostaglandin (PG) F2-like compounds termed F2-isoprostanes (IsoPs) in tissues in which arachidonic acid is abundant. Unlike other organs, the major polyunsaturated fatty acid (PUFA) in the brain is docosahexaenoic acid (DHA, C22:6 omega-6), and this fatty acid is particularly enriched in neurons. We have previously reported that DHA undergoes oxidation in vitro and in vivo resulting in the formation of a series of F2-IsoP-like compounds termed F4-neuroprostanes (F4-NPs). We recently chemically synthesized one F4-NP, 17-F4c-NP, converted it to an 18O-labeled derivative, and utilized it as an internal standard to develop an assay to quantify endogenous production of F4-NPs by gas chromatography (GC)/negative ion chemical ionization (NICI) mass spectrometry (MS). The assay is highly precise and accurate. The lower limit of sensitivity is approximately 10 pg. Levels of F4-NPs in brain tissue from rodents were 8.7 +/- 2.0 ng/g wet weight (mean +/- S.D.). Levels of the F4-NPs in brains from normal humans were found to be 4.9 +/- 0.6 ng/g (mean +/- S.D.) and were 2.1-fold higher in affected regions of brains from humans with Alzheimer's disease (P = 0.02). Thus, this assay provides a sensitive and accurate method to assess oxidation of DHA in animal and human tissues and will allow for the further elucidation of the role of oxidative injury to the central nervous system in association with human neurodegenerative disorders.  相似文献   
2.
崔尚志(1924—1989),辽宁名医,中西医结合的开拓者,活血化瘀研究的先驱者,毕生从事中西医结合防治冠心病的临床与研究。他参与研制了“冠心1号”等制剂,通过临床系列研究,总结其疗效规律,并率先开展动物实验研究,探讨中药制剂防治冠心病的作用机制。他主张中医“辨病”“辨证”与西医“辨病”相结合的方法辨证论治,以《内经》理论指导冠心病治疗,将冠心病辨为“心痹”病,分别气滞血瘀、气虚血瘀两大主证,并根据冠心病临床合并症不同,再分为阴虚阳亢等八个兼证。  相似文献   
3.
4.
5.
心力衰竭的发生发展涉及多条生理病理通路,选择不同通路中的多个生物标记物能够提高对心力衰竭风险评估的准确性。总结了心 力衰竭发生发展过程中与心肌损伤、内皮功能障碍、神经激素紊乱、炎症反应、氧化应激过程相关的生物标记物,基于多标记物评价方法 的数学模型及多标记物法在心力衰竭和药物心脏毒性风险评估中的应用。  相似文献   
6.

Background

Kallistatin is a serine proteinase inhibitor and heparin-binding protein. It is considered an endogenous angiogenic inhibitor. In addition, multiple studies demonstrated that kallistatin directly inhibits cancer cell growth. However, the molecular mechanisms underlying these effects remain unclear.

Methods

Pull-down, immunoprecipitation, and immunoblotting were used for binding experiments. To elucidate the mechanisms, integrin β3 knockdown (siRNA) or blockage (antibody treatment) on the cell surface of small the cell lung cancer NCI-H446 cell line was used.

Results

Interestingly, kallistatin was capable of binding integrin β3 on the cell surface of NCI-H446 cells. Meanwhile, integrin β3 knockdown or blockage resulted in loss of antitumor activities induced by kallistatin. Furthermore, kallistatin suppressed tyrosine phosphorylation of integrin β3 and its downstream signaling pathways, including FAK/-Src, AKT and Erk/MAPK. Viability, proliferation and migration of NCI-H446 cells were inhibited by kallistatin, with Bcl-2 and Grb2 downregulation, and Bax, cleaved caspase-9 and caspase 3 upregulation.

Conclusions

These findings reveal a novel role for kallistatin in preventing small cell lung cancer growth and mobility, by direct interaction with integrin β3, leading to blockade of the related signaling pathway.
  相似文献   
7.
Carbon nanotube (CNT) is a promising electrode material and has been used as an anode modifier in microbial fuel cells (MFCs). In this study, a new method of simultaneously adding CNT powders and Geobacter sulfurreducens into the anode chamber of a MFC was used, aiming to form a composite biofilm on the anode. The performance of MFCs such as startup time and steady-state power generation was investigated under conditions of different CNT powders dosages. Results showed that both the startup time and the anodic resistance were reduced. The optimal dosage of CNT powders pre-treated by acid was 4 mg/mL for the anode chamber with an effective volume of 25 mL. The anodic resistance and output voltage of the MFC with CNT powders addition were maintained around 180 Ω and 650 mV during 40 days operation, while those of the MFC without CNT powders addition increased from 250 Ω to 540 Ω and decreased from 630 mV to 540 mV, respectively, demonstrating that adding CNT powders helped stabilize the anodic resistance, thus the internal resistance and power generation during long-term operation. Based on cyclic voltammogram, the electrochemical activity of anodic biofilm was enhanced by adding CNT powders, though no significant increase of the biomass in anodic biofilm was detected by phospholipids analysis. There was no remarkable change of ohmic resistance with an addition of CNT powders revealed by current interrupt method, which indicated that the rate of mass transfer might be promoted by the presence of CNT powders.  相似文献   
8.
9.
We report herein that oxidation of a mitochondria-specific phospholipid tetralinoleoyl cardiolipin (L(4)CL) by cytochrome c and H(2)O(2) leads to the formation of 4-hydroxy-2-nonenal (4-HNE) via a novel chemical mechanism that involves cross-chain peroxyl radical addition and decomposition. As one of the most bioactive lipid electrophiles, 4-HNE possesses diverse biological activities ranging from modulation of multiple signal transduction pathways to the induction of intrinsic apoptosis. However, where and how 4-HNE is formed in vivo are much less understood. Recently a novel chemical mechanism has been proposed that involves intermolecular dimerization of fatty acids by peroxyl bond formation; but the biological relevance of this mechanism is unknown because a majority of the fatty acids are esterified in phospholipids in the cellular membrane. We hypothesize that oxidation of cardiolipins, especially L(4)CL, may lead to the formation of 4-HNE via this novel mechanism. We employed L(4)CL and dilinoleoylphosphatidylcholine (DLPC) as model compounds to test this hypothesis. Indeed, in experiments designed to assess the intramolecular mechanism, more 4-HNE is formed from L(4)CL and DLPC oxidation than 1-palmitoyl-2-linoleoylphosphatydylcholine. The key products and intermediates that are consistent with this proposed mechanism of 4-HNE formation have been identified using liquid chromatography-mass spectrometry. Identical products from cardiolipin oxidation were identified in vivo in rat liver tissue after carbon tetrachloride treatment. Our studies provide the first evidence in vitro and in vivo for the formation 4-HNE from cardiolipin oxidation via cross-chain peroxyl radical addition and decomposition, which may have implications in apoptosis and other biological activities of 4-HNE.  相似文献   
10.
Isoprostanes (IsoPs) are isomers of prostaglandins that are generated from the free radical-initiated peroxidation of arachidonic acid (C20.4 omega-6). IsoPs exert potent bioactivity and are regarded as the "gold standard" to assess oxidative stress in various human diseases. Analogously, autoxidation of docosahexaenoic acid (DHA, C22.6 omega-3) generates an array of IsoP-like compounds that are termed neuroprostanes (NPs). A major class of NPs identified in vitro and in vivo contains F-type prostane rings and are know as F4-NPs. A number of different F4-NP regioisomers are formed from the peroxidation of DHA. Among the eight possible regioisomeric groups, we hypothesize that 4- and 20-series NPs are generated in greater amounts than other classes because the precursors that lead to regioisomers other than those of the 4- and 20-series can be further oxidized to form novel dioxolane-IsoP-like compounds, analogous to those generated from arachidonate. Various mass spectrometric approaches, including electron capture atmospheric pressure chemical ionization mass spectrometry, were utilized to analyze NPs formed in vitro and in vivo based on their characteristic fragmentation in the gas phase. Experimental results were consistent with our hypothesis that 4- and 20-series NP regioisomers are preferentially generated. The discovery of regioselectivity in the formation of NPs will allow studies of the biological activities of NPs to focus on the more abundantly generated compounds to determine their role in modulating the pathophysiological consequences of DHA oxidation and oxidant stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号