首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2008年   5篇
  2007年   5篇
  2006年   5篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
1.
In biomechanical joint-motion analyses, the continuous motion to be studied is often approximated by a sequence of finite displacements, and the Finite Helical Axis (FHA) or "screw axis" for each displacement is estimated from position measurements on a number of anatomical or artificial landmarks. When FHA parameters are directly determined from raw (noisy) displacement data, both the position and the direction of the FHA are ill-determined, in particular when the sequential displacement steps are small. This implies, that under certain conditions, the continuous pathways of joint motions cannot be adequately described. The purpose of the present experimental study is to investigate the applicability of smoothing (or filtering) techniques, in those cases where FHA parameters are ill-determined. Two different quintic-spline smoothing methods were used to analyze the motion data obtained with Roentgenstereophotogrammetry in two experiments. One concerning carpal motions in a wrist-joint specimen, and one relative to a kinematic laboratory model, in which the axis positions are a priori known. The smoothed and non-smoothed FHA parameter errors were compared. The influences of the number of samples and the size of the sampling interval (displacement step) were investigated, as were the effects of equidistant and nonequidistant sampling conditions and noise invariance.  相似文献   
2.
3.
Larvae of Meromyza pratorum Meigen (Diptera, Chloropidae) were found to affect tillers of Ammophila arenaria (L.) Link in the dunes of Newborough Warren. Anglesey, U.K. The highest percentages of affected tillers were found in September. There were clear differences between the proportions of affected tillers in the various successional stages of the dunes. It was found that the proportion of affected tillers was reduced by a fertilizer treatment but slightly increased by removing associated species.  相似文献   
4.
Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 μm had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone.  相似文献   
5.
The central paradigm of skeletal mechanobiology is that mechanical forces modulate morphological and structural fitness of the skeletal tissues-bone, cartilage, ligament and tendon. Traditionally, skeletal biomechanics has focussed on how these tissues perform the structural and locomotory functions of the vertebrate skeleton. In mechanobiology the central question is how these same load-bearing tissues are produced, maintained and adapted by cells as an active response to biophysical stimuli in their environment. The idea that 'form follows function' is not new, but we now believe that the scientific community has the knowledge and tools to prove, understand and use functional adaptation to benefit medicine and human health. In this Survey Article the philosophy and progress of skeletal mechanobiology are discussed. The revival of this science, with roots dating back to the 19th Century, is now driven by new developments in cellular, molecular and computational technologies. These developments are still in an early stage of application, but if modern mechanobiology fulfills the promises of its ambitions, the results will bring great benefits to tissue engineering and to the treatment and prevention of skeletal conditions such as congenital deformities, osteoporosis, osteoarthritis and bone fractures.  相似文献   
6.
In the context of mechanical loosening, we studied the hypothesis that wear-particle migration in the fibrous membrane under tibial plateaus after total knee arthroplasty can be explained by the pumping effects of the interstitial fluid in the tissue. Further, as a secondary objective we investigated the possibility that interface-tissue differentiation is influenced by interstitial fluid flow and strain, as mechanical effects of interface motions. For comparative reasons, we analyzed a previously published simplified two-dimensional finite-element model, this time assuming biphasic tissue properties. We wanted to determine hydrostatic pressure and flow velocities in the fluid phase, in addition to stresses and strains, for time-dependent loading of the plateau. We found that fluid flow in the interface was extremely slow, except in the periphery. Hence, loosening due to particle-induced bone resorption appears improbable. The results, however, do support the idea that particles migrate with fluid flow, when such flow occurs. Where fibrous tissue tends to be prominent in reality, the fluid is repeatedly extruded and reabsorbed in the model. Where these values are low, fibrocartilage is commonly found. When material properties were varied to subsequently represent fibrocartilage and two stages of mineralization, the strains and fluid velocities is reduced. Fluid pressure, however, did not change. Our results refute the hypothesis that wear particles are pumped through the interface tissue below a TKA but support the hypothesis that interface tissue type and loosening processes are influenced by mechanical tissue variables such as tissue strain and interstitial fluid velocity.  相似文献   
7.
Corroboration of mechano-regulation algorithms is difficult, partly because repeatable experimental outcomes under a controlled mechanical environment are necessary, but rarely available. In distraction osteogenesis (DO), a controlled displacement is used to regenerate large volumes of new bone, with predictable and reproducible outcomes, allowing to computationally study the potential mechanisms that stimulate bone formation. We hypothesized that mechano-regulation by octahedral shear strain and fluid velocity can predict the spatial and temporal tissue distributions seen during experimental DO. Variations in predicted tissue distributions due to alterations in distraction rate and frequency could then also be studied. An in vivo ovine tibia experiment evaluating bone-segment transport (distraction, 1 mm/day) over an intramedullary nail was used for comparison. A 2D axisymmetric finite element model, with a geometry originating from the experimental data, was created and included into a previously developed model of tissue differentiation. Cells migrated and proliferated into the callus, differentiating into fibroblasts, chondrocytes or osteoblasts, dependent on the biophysical stimuli. Matrix production was modelled with an osmotic swelling model to allow tissues to grow at individual rates. The temporal and spatial tissue distributions predicted by the computational model agreed well with those seen experimentally. In addition, it was observed that decreased distraction rate (0.5 mm/d vs. 0.25 mm/d) increased the overall time needed for complete bone regeneration, whereas increased distraction frequency (0.5 mm/12 h vs. 0.25 mm/6 h) stimulated faster bone regeneration, as found in experimental findings by others. Thus, the algorithm regulated by octahedral shear strain and fluid velocity was able to predict the bone regeneration patterns dependent on distraction rate and frequency during DO.  相似文献   
8.
9.
Bone formation responds to mechanical loading, which is believed to be mediated by osteocytes. Previous theories assumed that loading stimulates osteocytes to secrete signals that stimulate bone formation. In computer simulations this 'stimulatory' theory successfully produced load-aligned trabecular structures. In recent years, however, it was discovered that osteocytes inhibit bone formation via the protein sclerostin. To reconcile this with strain-induced bone formation, one must assume that sclerostin secretion decreases with mechanical loading. This leads to a new 'inhibitory' theory in which loading inhibits osteocytes from inhibiting bone formation. Here we used computer simulations to show that a sclerostin-based model is able to produce a load-aligned trabecular architecture. An important difference appeared when we compared the response of the stimulatory and inhibitory models to loss of osteocytes, and found that the inhibitory pathway prevents the loss of trabeculae that is seen with the stimulatory model. Further, we demonstrated with combined stimulatory/inhibitory models that the two pathways can work side-by-side to achieve a load-adapted bone architecture.  相似文献   
10.
A three-dimensional digital image correlation technique is presented for strain measurements in open-cell structures such as trabecular bone. The technique uses high-resolution computed tomography images for displacement measurements in the solid structure. In order to determine the local strain-state within single trabeculae, a tetrahedronization method is used to fill the solid structure with tetrahedrae. Displacements are calculated at the nodes of the tetrahedrae. The displacement data is subsequently converted to a deformation tensor in each of the tetrahedral element centers with a least-squares estimation method. Because the trabeculae are represented by a mesh, it is possible to deform this mesh according to the deformation tensor and, at the same time, visualize the calculated local strain in the deformed mesh with a finite element post-processing tool. In this way, the deformation of a single trabecula from an aluminum foam sample was determined and validated with rendered images of the three-dimensional sample. A precision analysis showed that a rigid translation or rotation does not affect the accuracy. Typical values for the standard deviation in the displacement and strain components are 2.0 microm and 0.01, respectively. Presently, the precision limits the technique to strain measurements beyond the yield strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号