首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4786篇
  免费   297篇
  国内免费   1篇
  5084篇
  2022年   30篇
  2021年   62篇
  2020年   66篇
  2019年   55篇
  2018年   90篇
  2017年   74篇
  2016年   108篇
  2015年   142篇
  2014年   179篇
  2013年   192篇
  2012年   249篇
  2011年   237篇
  2010年   121篇
  2009年   119篇
  2008年   175篇
  2007年   198篇
  2006年   174篇
  2005年   172篇
  2004年   192篇
  2003年   167篇
  2002年   171篇
  2001年   80篇
  2000年   95篇
  1999年   74篇
  1998年   64篇
  1997年   43篇
  1996年   61篇
  1995年   47篇
  1994年   55篇
  1993年   54篇
  1992年   63篇
  1991年   58篇
  1990年   78篇
  1989年   71篇
  1988年   67篇
  1987年   61篇
  1986年   46篇
  1985年   51篇
  1984年   53篇
  1983年   60篇
  1982年   41篇
  1981年   49篇
  1980年   43篇
  1979年   41篇
  1978年   42篇
  1977年   36篇
  1975年   36篇
  1974年   35篇
  1973年   41篇
  1972年   28篇
排序方式: 共有5084条查询结果,搜索用时 0 毫秒
1.
The fermentation of xylose by Thermoanaerobacter ethanolicus ATCC 31938 was studied in pH-controlled batch and continuous cultures. In batch culture, a dependency of growth rate, product yield, and product distribution upon xylose concentration was observed. With 27 mM xylose media, an ethanol yield of 1.3 mol ethanol/mol xylose (78% of maximum theoretical yield) was typically obtained. With the same media, xylose-limited growth in continuous culture could be achieved with a volumetric productivity of 0.50 g ethanol/liter h and a yield of 0.42 g ethanol/g xylose (1.37 mol ethanol/mol xylose). With extended operation of the chemostat, variation in xylose uptake and a decline in ethanol yield was seen. Instability with respect to fermentation performance was attributed to a selection for mutant populations with different metabolic characteristics. Ethanol production in these T. ethanolicus systems was compared with xylose-to-ethanol conversions of other organisms. Relative to the other systems, T. ethanolicus offers the advantages of a high ethanol yield at low xylose concentrations in batch culture and of a rapid growth rate. Its disadvantages include a lower ethanol yield at higher xylose concentrations in batch culture and an instability of fermentation characteristics in continuous culture.  相似文献   
2.
We have purified a FMRFamide-like peptide from extracts of brain-subesophageal ganglion of the moth, Manduca sexta. The purification was monitored with a new, competitive ELISA, and accomplished with ion exchange and reverse-phase HPLC. The peptide structure was determined by a combination of tandem mass spectrometry and automated Edman degradation. The amino acid sequence of the peptide is less than Glu-Asp-Val-Val-His-Ser-Phe-Leu-Arg-Phe-amide (pEDVVHSFLRF-NH2). In a separate purification, an identical peptide was isolated from extracts of brain-associated neurohemal structures. We have named this peptide ManducaFLRFamide, to indicate its homology with other members of the "FMRFamide" family. In bioassays, chemically synthesized peptide increased the force of neurally evoked contractions in the major power-producing flight muscles, the dorsal longitudinal muscles. This observation suggests that hormonally released ManducaFLRFamide may play a role in sustaining or promoting the flight behavior necessary for mate-seeking (in males) or oviposition (in females) in sphingid moths.  相似文献   
3.
We have produced the B subunit of the enterotoxigenic Escherichia coli (ETEC) heat-labile enterotoxin (LT-B) in transgenic maize seed. LT-B is a model antigen that induces a strong immune response upon oral administration and enhances immune responses to conjugated and co-administered antigens. Using a synthetic LT-B gene with optimized codon sequence, we examined the role of promoters and the SEKDEL endoplasmic reticulum retention motif in LT-B accumulation in callus and in kernels. Two promoters, the constitutive CaMV 35S promoter and the maize 27 kDa gamma zein promoter, which directs endosperm-specific gene expression in maize kernels, regulated LT-B expression. Ganglioside-dependent ELISA analysis showed that using the constitutive promoter, maximum LT-B level detected in callus was 0.04% LT-B in total aqueous-extractable protein (TAEP) and 0.01% in R1 kernels of transgenic plants. Using the gamma zein promoter, LT-B accumulation reached 0.07% in R1 kernels. The SEKDEL resulted in increased LT-B levels when combined with the gamma zein promoter. We monitored LT-B levels under greenhouse and field conditions over three generations. Significant variability in gene expression was observed between transgenic events, and between plants within the same event. A maximum of 0.3% LT-B in TAEP was measured in R3 seed of a transgenic line carrying CaMV 35S promoter/LT-B construct. In R3 seed of a transgenic line carrying the gamma zein promoter/LT-B construct, up to 3.7% LT-B in TAEP could be detected. We concluded that maize seed can be used as a production system for functional antigens.  相似文献   
4.
5.
Tissue transglutaminase (TG2) is a Ca2+-dependent enzyme and probably the most ubiquitously expressed member of the mammalian transglutaminase family. TG2 plays a number of important roles in a variety of biological processes. Via its transamidating function, it is responsible for the cross-linking of proteins by forming isopeptide bonds between glutamine and lysine residues. Intracellularly, Ca2+ activation of the enzyme is normally tightly regulated by the binding of GTP. However, upregulated levels of TG2 are associated with many disease states like celiac sprue, certain types of cancer, fibrosis, cystic fibrosis, multiple sclerosis, Alzheimer’s, Huntington’s and Parkinson’s disease. Selective inhibitors for TG2 both cell penetrating and non-cell penetrating would therefore serve as novel therapeutic tools for the treatment of these disease states. Moreover, they would provide useful tools to fully elucidate the cellular mechanisms TG2 is involved in and help comprehend how the enzyme is regulated at the cellular level. The current paper is intended to give an update on the recently discovered classes of TG2 inhibitors along with their structure–activity relationships. The biological properties of these derivatives, in terms of both activity and selectivity, will also be reported in order to translate their potential for future therapeutic developments.  相似文献   
6.
Viruses use a wide range of strategies to modulate the host immune response. The human gammaherpesvirus EBV, causative agent of infectious mononucleosis and several malignant tumors, encodes proteins that subvert immune responses, notably those mediated by T cells. Less is known about EBV interference with innate immunity, more specifically at the level of TLR-mediated pathogen recognition. The viral dsDNA sensor TLR9 is expressed on B cells, a natural target of EBV infection. Here, we show that EBV particles trigger innate immune signaling pathways through TLR9. Furthermore, using an in vitro system for productive EBV infection, it has now been possible to compare the expression of TLRs by EBV(-) and EBV(+) human B cells during the latent and lytic phases of infection. Several TLRs were found to be differentially expressed either in latently EBV-infected cells or after induction of the lytic cycle. In particular, TLR9 expression was profoundly decreased at both the RNA and protein levels during productive EBV infection. We identified the EBV lytic-phase protein BGLF5 as a protein that contributes to downregulating TLR9 levels through RNA degradation. Reducing the levels of a pattern-recognition receptor capable of sensing the presence of EBV provides a mechanism by which the virus could obstruct host innate antiviral responses.  相似文献   
7.
8.
The pollen coatings of both Brassica oleracea and Brassica napus contain a small family of basic 6–8 kDa proteins which are released on to the stigmatic surface on pollination. Following partial amino-acid sequencing of one of these pollen coat proteins (PCPs), PCR primers were constructed to isolate the PCP sequence from anther mRNA using RT-PCR. A cDNA was obtained which, in Northern hybridization experiments, revealed a characteristic pattern of expression during late stages of anther development. Interestingly, in situ hybridization revealed expression of this sequence to be confined to the cytoplasm of the trinucleate pollen grains: no signal was detected in the tapetum. Southern hybridization experiments have shown the gene ( PCP1 ) to be a member of a large family of between 30 and 40 PCP genes in the genome of Brassica oleracea , Surprisingly, RFLP experiments showed reduced copy number (one to two copies) in some of the F2 segregants, perhaps resulting from the clustering of PCP sequences. PCP1 contains a single intron and encodes a small, basic peptide 83 amino acids in length featuring a hydrophobic signal peptide sequence separated from the more hydrophilic, cysteine-rich mature protein. The central part and C-terminal region of the peptide contain a characteristic and invariant pattern of eight cysteines which show clear homology with a number of other anther-specific genes; the remainder of the sequence shows little similarity to other sequences on the data bases. The product of PCP1 is a member of a large family of similar proteins, some of which have been demonstrated to bind specifically to S-locus glycoproteins, but does not appear to be genetically linked to the S-locus .  相似文献   
9.
There is limited research on relationships between root characteristics and soil chemical properties and processes. Because previous studies have shown specific C compounds may release previously sorbed P and make P more plant-available, crops which contribute to high soil C levels could play an important role in soil P cycling. The objectives of this study were to determine (1) whether rotation crops had different amounts of root growth, (2) whether different amounts of root growth among the crop species could be related to different levels of soluble soil C and (3) whether there were differences in P concentration among the soils under different crops that could be related to soluble C soil concentration. Roots and soil from potato (Solanum tuberosum L.), barley (Hordeum vulgare L.), soybean (Glycine max (L.) Merr.), and a forage consisting of alfalfa (Medicago sativa L.) and timothy (Phleum pretense L.) were sampled from the Aroostook Research Farm in Presque Isle, Maine, during the summers of 2003 and 2004 to determine root length density (RLD) and soluble C and P concentrations. Half of the sampled plots were amended with beef manure and half were not amended. Barley and forage consistently had higher RLD than potato or soybean crops. Barley and forage typically had higher concentrations of soluble soil C than potato or soybean, but the differences were significant at only three of the five sampling dates. RLD was significantly correlated to soluble C (r=0.56) only for amended soils on the August 2003 sampling date. For other dates r values were non-significant and ranged from 0.32 to 0.49. As with soil C, soluble soil P levels were typically higher in barley and forage than in potato or soybean crops. Significant differences were detected at four of the five sampling dates. Correlations between soluble C and soluble P were significant at two of the five sampling dates (r = 0.58 and 0.62) in amended soils and one of five sampling dates (r = 0.80) in unamended soils. Although the correlations between RLD and soluble C were not significant at every sampling date, the August 2003 data do suggest a possible effect of roots on soluble C. In addition, significant correlations between soluble C and soluble P at several sampling dates suggest a relationship between these parameters. Therefore cropping systems that include crops with higher amounts of root growth may promote increased soluble soil C levels and enhance P bioavailability.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号