首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   2篇
  2023年   1篇
  2017年   1篇
  2015年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2003年   1篇
  1970年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
2.
Zinc homeostasis was investigated in Nostoc punctiforme. Cell tolerance to Zn2+ over 14 days showed that ZnCl2 levels above 22 μM significantly reduced cell viability. After 3 days in 22 μM ZnCl2, ca. 12% of the Zn2+ was in an EDTA-resistant component, suggesting an intracellular localization. Zinquin fluorescence was detected within cells exposed to concentrations up to 37 μM relative to 0 μM treatment. Radiolabeled 65Zn showed Zn2+ uptake increased over a 3-day period, while efflux occurred more rapidly within a 3-h time period. Four putative genes involved in Zn2+ uptake and efflux in N. punctiforme were identified: (i) the predicted Co/Zn/Cd cation transporter, putative CDF; (ii) the predicted divalent heavy-metal cation transporter, putative Zip; (iii) the ATPase component and Fe/Zn uptake regulation protein, putative Fur; and (iv) an ABC-type Mn/Zn transport system, putative zinc ZnuC, ZnuABC system component. Quantitative real-time PCR indicated the responsiveness of all four genes to 22 μM ZnCl2 within 3 h, followed by a reduction to below basal levels after 24 h by putative ZIP, ZnuC, and Fur and a reduction to below basal level after 72 h by putative CDF efflux gene. These results demonstrate differential regulation of zinc transporters over time, indicating a role for them in zinc homeostasis in N. punctiforme.  相似文献   
3.
4.
The ZIP family of metal transporters is involved in the transport of Zn2+ and other metal cations from the extracellular environment and/or organelles into the cytoplasm of prokaryotes, eukaryotes and archaeotes. In the present study, we identified twin ZIP transporters, Zip11 (Npun_F3111) and Zip63 (Npun_F2202) encoded within the genome of the filamentous cyanobacterium, Nostoc punctiforme PCC73120. Sequence-based analyses and structural predictions confirmed that these cyanobacterial transporters belong to the SLC39 subfamily of metal transporters. Quantitative real-time (QRT)-PCR analyses suggested that the enzymes encoded by zip11 and zip63 have a broad allocrite range that includes zinc as well as cadmium, cobalt, copper, manganese and nickel. Inactivation of either zip11 or zip63 via insertional mutagenesis in N. punctiforme resulted in reduced expression of both genes, highlighting a possible co-regulation mechanism. Uptake experiments using 65Zn demonstrated that both zip mutants had diminished zinc uptake capacity, with the deletion of zip11 resulting in the greatest overall reduction in 65Zn uptake. Over-expression of Zip11 and Zip63 in an E. coli mutant strain (ZupT736::kan) restored divalent metal cation uptake, providing further evidence that these transporters are involved in Zn uptake in N. punctiforme. Our findings show the functional role of these twin metal uptake transporters in N. punctiforme, which are independently expressed in the presence of an array of metals. Both Zip11 and Zip63 are required for the maintenance of homeostatic levels of intracellular zinc N. punctiforme, although Zip11 appears to be the primary zinc transporter in this cyanobacterium, both ZIP’s may be part of a larger metal uptake system with shared regulatory elements.  相似文献   
5.

This study investigated the role of a novel metal-dependent catalase (Npun_R4582) that reduces hydrogen peroxide in the cyanobacterium Nostoc punctiforme. Quantitative real-time PCR showed that npun_R4582 relative mRNA levels were upregulated by over 16-fold in cells treated with either 2 μM added Co, 0.5 μM added Cu, 500 μM Mn, 1 μM Ni, or 18 μM Zn. For cells treated with 60 μM H2O2, no significant alteration in Npun_R4582 relative mRNA levels was detected, while in cells treated with Co, Cu, Mn, Ni, or Zn and 60 μM peroxide, relative mRNA levels were generally above control or peroxide only treated cells. Disruption or overexpression of npun_R4582 altered sensitivity to cells exposed to 60 μM H2O2 and metals for treatments beyond the highest viable concentrations, or in a mixed metal solution for Npun_R4582 cells. Moreover, overexpression of npun_R4582 increased cellular peroxidase activity in comparison with wild-type and Npun_R4582 cells, and reduced peroxide levels by over 50%. The addition of cobalt, manganese, nickel, and zinc increased the capacity of Npun_R4582 to reduce the rate or total levels of peroxide produced by cells growing under photooxidative conditions. The work presented confirms the function of NpunR4582 as a catalase and provides insights as to how cells reduce potentially lethal peroxide levels produced by photosynthesis. The findings also show how trace elements play crucial roles as enzymatic cofactors and how the role of Npun_R4582 in hydrogen peroxide breakdown is dependent on the type of metal and the level available to cells.

  相似文献   
6.
Trace metals are required for many cellular processes. The acquisition of trace elements from the environment includes a rapid adsorption of metals to the cell surface, followed by a slower internalization. We investigated the uptake of the trace elements Co(2+), Cu(2+), Mn(2+), Ni(2+), and Zn(2+) and the non-essential divalent cation Cd(2+) in the cyanobacterium Nostoc punctiforme. For each metal, a dose response study based on cell viability showed that the highest non-toxic concentrations were: 0.5?μM Cd(2+), 2?μM Co(2+), 0.5?μM Cu(2+), 500?μM Mn(2+), 1?μM Ni(2+), and 18?μM Zn(2+). Cells exposed to these non-toxic concentrations with combinations of Zn(2+) and Cd(2+), Zn(2+) and Co(2+), Zn(2+) and Cu(2+) or Zn(2+) and Ni(2+), had reduced growth in comparison to controls. Cells exposed to metal combinations with the addition of 500?μM Mn(2+) showed similar growth compared to the untreated controls. Metal levels were measured after one and 72?h for whole cells and absorbed (EDTA-resistant) fractions and used to calculate differential uptake rates for each metal. The differences in binding and internalisation between different metals indicate different uptake processes exist for each metal. For each metal, competitive uptake experiments using (65)Zn showed that after 72?h of exposure Zn(2+) uptake was reduced by most metals particularly 0.5?μM Cd(2+), while 2?μM Co(2+) increased Zn(2+) uptake. This study demonstrates that N. punctiforme discriminates between different metals and favourably substitutes their uptake to avoid the toxic effects of particular metals.  相似文献   
7.
8.
Kinetics of crimp and slope grip in rock climbing   总被引:1,自引:0,他引:1  
The aim was to investigate differences of the kinetics of the crimp and the slope grip used in rock climbing. Nine cadaver fingers were prepared and fixated with the proximal phalanx in a frame. The superficial (FDS) and deep (FDP) flexor tendons were loaded selectively and together with 40 N in the crimp grip (PIP joint flexed 90°/DIP joint hyperextended) and the slope grip position (<25° flexed/50° flexed respectively). Five different grip sizes were tested and the flexion force which was generated to the grip was measured. In the crimp grip the FDP generated more flexion force in small sized holds whereas the FDS generated more force in the larger holds. During the slope grip the FDP was more effective than the FDS. While both tendons were loaded, the flexion force was always greater during crimp grip compared with the slope grip. The FDP seems to be most important for very small holds using the crimp grip but also during slope grip holds whereas the FDS is more important for larger flat holds.  相似文献   
9.

Premise

Dominant in many ecosystems around the world, clonal plants can reach considerable ages and sizes. Due to their modular growth patterns, individual clonal plants (genets) can consist of many subunits (ramets). Since single ramets do not reflect the actual age of genets, the ratio between genet size (radius) and longitudinal annual growth rate (LAGR) of living ramets is often used to approximate the age of clonal plants. However, information on how the LAGR changes along ramets and how LAGR variability may affect age estimates of genets is still limited.

Methods

We assessed the variability of LAGR based on wood-section position along the ramets and on the duration of the growing season on three genetically distinct genets of Salix herbacea growing in the Northern Apennines (Italy). We compared genet ages estimated by dividing genet radius by the LAGRs of its ramets.

Results

LAGR increased significantly from the stem apex to the root collar; indicating that ramet growth rate decreased with time. Furthermore, a difference of ca. 2 weeks in the onset of the growing period did not impact LAGR. Considering the high LAGR variability, we estimated that the three genets started to grow between ~2100 and ~7000 years ago, which makes them the oldest known clones of S. herbacea even considering the most conservative age estimate.

Conclusions

Our findings indicate that analyzing ramets at the root collar provides an integrative measurement of their overall LAGR, which is crucial for estimating the age of genets.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号