首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   22篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   4篇
  2017年   8篇
  2016年   4篇
  2015年   7篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2008年   1篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2002年   3篇
  2001年   2篇
排序方式: 共有55条查询结果,搜索用时 31 毫秒
1.
2.
Mechanistic modeling of chromatography processes is one of the most promising techniques for the digitalization of biopharmaceutical process development. Possible applications of chromatography models range from in silico process optimization in early phase development to in silico root cause investigation during manufacturing. Nonetheless, the cumbersome and complex model calibration still decelerates the implementation of mechanistic modeling in industry. Therefore, the industry demands model calibration strategies that ensure adequate model certainty in a limited amount of time. This study introduces a directed and straightforward approach for the calibration of pH-dependent, multicomponent steric mass action (SMA) isotherm models for industrial applications. In the case investigated, the method was applied to a monoclonal antibody (mAb) polishing step including four protein species. The developed strategy combined well-established theories of preparative chromatography (e.g. Yamamoto method) and allowed a systematic reduction of unknown model parameters to 7 from initially 32. Model uncertainty was reduced by designing two representative calibration experiments for the inverse estimation of remaining model parameters. Dedicated experiments with aggregate-enriched load material led to a significant reduction of model uncertainty for the estimates of this low-concentrated product-related impurity. The model was validated beyond the operating ranges of the final unit operation, enabling its application to late-stage downstream process development. With the proposed model calibration strategy, a systematic experimental design is provided, calibration effort is strongly reduced, and local minima are avoided.  相似文献   
3.
Cation exchange chromatography (CEX) is an essential part of most monoclonal antibody (mAb) purification platforms. Process characterization and root cause investigation of chromatographic unit operations are performed using scale down models (SDM). SDM chromatography columns typically have the identical bed height as the respective manufacturing-scale, but a significantly reduced inner diameter. While SDMs enable process development demanding less material and time, their comparability to manufacturing-scale can be affected by variability in feed composition, mobile phase and resin properties, or dispersion effects depending on the chromatography system at hand. Mechanistic models can help to close gaps between scales and reduce experimental efforts compared to experimental SDM applications. In this study, a multicomponent steric mass-action (SMA) adsorption model was applied to the scale-up of a CEX polishing step. Based on chromatograms and elution pool data ranging from laboratory- to manufacturing-scale, the proposed modeling workflow enabled early identification of differences between scales, for example, system dispersion effects or ionic capacity variability. A multistage model qualification approach was introduced to measure the model quality and to understand the model's limitations across scales. The experimental SDM and the in silico model were qualified against large-scale data using the identical state of the art equivalence testing procedure. The mechanistic chromatography model avoided limitations of the SDM by capturing effects of bed height, loading density, feed composition, and mobile phase properties. The results demonstrate the applicability of mechanistic chromatography models as a possible alternative to conventional SDM approaches.  相似文献   
4.
Confocal laser scanning microscopy (CLSM) is a method allowing in situ visualization of protein transport in porous chromatography resins. CLSM requires labeling a protein with a fluorescent probe. Recent work has shown that conjugation of the protein with fluorescent probes can lead to significant changes in the retention time of the protein-dye conjugate with respect to the unlabeled protein. In this study, we show that common labeling procedures result in a heterogeneous mixture of different variants and that attachment location of the fluorescent probe on the protein surface can have a strong effect on the retention of protein-dye conjugate. Lysozyme was labeled with Cy5 and BODIPY-FL succinimidyl esters, followed by chromatographic separation of the different lysozyme-dye conjugates and subsequent determination of the label position using MALDI-TOF-MS. Finally, homogenously labeled lysozyme-dye conjugates were used in CLSM experimentation and compared to published results arising from heterogeneously labeled feedstocks. The results confirm that the attachment location of the fluorescent probe has a strong effect on chromatographic retention behavior. When addressing the binding affinities of the different labeled protein fractions, it was found that native lysozyme was able to displace lysozyme-dye conjugates when the fluorescent label was attached to lysine-33, but not when attached to lysine-97. Finally, it could be shown that when superimposing the single profiles of the three major fractions obtained during a labeling procedure a qualitative picture of the net profile is obtained.  相似文献   
5.
6.
7.
Expanded bed adsorption is an innovative chromatographic technology that allows the introduction of particle-containing feedstock without the risk of blocking the bed. Provided a perfectly classified fluidized bed (termed expanded bed) is formed in the crude feedstock and the biomass is not influencing protein transport towards the adsorbent surface, a sorption performance comparable to packed beds is found. The influence of biomass on the hydrodynamic stability of expanded beds is essential and was investigated systematically in this article. Residence-time distribution analyses were performed using model systems and a yeast suspension under various fluid-phase conditions. It is demonstrated that three factors (biomass/adsorbent interactions, biomass concentration, and flow rate) play an interdependent role disturbing the classified fluidization of an expanded bed. A clear correlation between the degree of aggregative fluidization--obtained by PDE modeling of RTD data--and the expansion behavior of the fluidized bed has been found. Thus, combining three analytical methods, namely cell transmission index analysis, expansion analysis, and RTD analysis provides a solid base for understanding and control of the fluidization behavior and thus further process design during the initial phase of process development.  相似文献   
8.
Expanded bed adsorption (EBA) is an integrative step in downstream processing allowing the direct capture of target proteins from cell-containing feedstocks. Extensive co-adsorption of biomass, however, may hamper the application of this technique. The latter is especially observed at anion exchange processes as cells or cell debris are negatively charged under common anion exchange conditions. The restrictions observed under these conditions are, however, directly related to processing steps prior to fluidised bed application. In this study, it could be shown that the effective surface charge of cell debris obtained during homogenisation is closely related to the debris size and thus to the homogenisation method and conditions. The amount and thus effect of cells binding to the adsorbent could be significantly decreased when optimising the homogenisation step not only towards optimal product release but towards a reduction of debris size and charge. The lower size and charge of the debris results not only in a reduced retention probability but also, in a lower collision probability between debris and adsorbent. The applicability was shown in an example where the homogenisation conditions of E. coli were optimised towards EBA applications. In a previous report (Reichert et al., 2001) studying the suitability of EBA for the capture of formate dehydrogenate from E. coli homogenate the pseudo affinity resin Streamline Red was identified as the only suitable adsorbent. The new approach, however, led to a system where anion exchange as capture step became possible, however, to the cost of binding capacity.  相似文献   
9.
In the last decade, high-throughput downstream process development techniques have entered the biopharmaceutical industry. As chromatography is the standard downstream purification method, several high-throughput chromatographic methods have been developed and applied including miniaturized chromatographic columns for utilization on liquid handling stations. These columns were used to setup a complete downstream process on a liquid handling station for the first time. In this article, a monoclonal antibody process was established in lab-scale and miniaturized afterwards. The scale-down methodology is presented and discussed. Liquid handling in miniaturized single and multicolumn processes was improved and applicability was demonstrated by volume balances. The challenges of absorption measurement are discussed and strategies were shown to improve volume balances and mass balances in 96-well microtiter plates. The feasibility of miniaturizing a complete downstream process was shown. In the future, analytical bottlenecks should be addressed to gain the full benefit from miniaturized complete process development.  相似文献   
10.
The availability of preparative‐scale downstream processing strategies for cell‐based products presents a critical juncture between fundamental research and clinical development. Aqueous two‐phase systems (ATPS) present a gentle, scalable, label‐free, and cost‐effective method for cell purification, and are thus a promising tool for downstream processing of cell‐based therapeutics. Here, the application of a previously developed robotic screening platform that enables high‐throughput cell partitioning analysis in ATPS is reported. In the present case study a purification strategy for two model cell lines based on high‐throughput screening (HTS)‐data and countercurrent distribution (CCD)‐modeling, and validated the CCD‐model experimentally is designed. The obtained data are shown an excellent congruence between CCD‐model and experimental data, indicating that CCD‐models in combination with HTS‐data are a powerful tool in downstream process development. Finally, the authors are shown that while cell cycle phase significantly influences cell partitioning, cell type specific differences in surface properties are the main driving force in charge‐dependent separation of HL‐60 and L929 cells. In order to design a highly robust purification process it is, however, advisable to maintain constant growth conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号