首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2005年   1篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 31 毫秒
1.
2.
3.

Background  

Investigation of metagenomes provides greater insight into uncultured microbial communities. The improvement in sequencing technology, which yields a large amount of sequence data, has led to major breakthroughs in the field. However, at present, taxonomic binning tools for metagenomes discard 30-40% of Sanger sequencing data due to the stringency of BLAST cut-offs. In an attempt to provide a comprehensive overview of metagenomic data, we re-analyzed the discarded metagenomes by using less stringent cut-offs. Additionally, we introduced a new criterion, namely, the evolutionary conservation of adjacency between neighboring genes. To evaluate the feasibility of our approach, we re-analyzed discarded contigs and singletons from several environments with different levels of complexity. We also compared the consistency between our taxonomic binning and those reported in the original studies.  相似文献   
4.
5.
6.
7.
Non-B DNA structures are abundant in the genome and are often associated with critical biological processes, including gene regulation, chromosome rearrangement and genome stabilization. In particular, G-quadruplex (G4) may affect alternative splicing based on its ability to impede the activity of RNA polymerase II. However, the specific role of non-B DNA structures in splicing regulation still awaits investigation. Here, we provide a genome-wide and cross-species investigation of the associations between five non-B DNA structures and exon skipping. Our results indicate a statistically significant correlation of each examined non-B DNA structures with exon skipping in both human and mouse. We further show that the contributions of non-B DNA structures to exon skipping are influenced by the occurring region. These correlations and contributions are also significantly different in human and mouse. Finally, we detailed the effects of G4 by showing that occurring on the template strand and the length of G-run, which is highly related to the stability of a G4 structure, are significantly correlated with exon skipping activity. We thus show that, in addition to the well-known effects of RNA and protein structure, the relative positional arrangement of intronic non-B DNA structures may also impact exon skipping.  相似文献   
8.
Method for identifying transcription factor binding sites in yeast   总被引:2,自引:0,他引:2  
  相似文献   
9.
MOTIVATION: Disulfide bonds play an important role in protein folding. A precise prediction of disulfide connectivity can strongly reduce the conformational search space and increase the accuracy in protein structure prediction. Conventional disulfide connectivity predictions use sequence information, and prediction accuracy is limited. Here, by using an alternative scheme with global information for disulfide connectivity prediction, higher performance is obtained with respect to other approaches. RESULT: Cysteine separation profiles have been used to predict the disulfide connectivity of proteins. The separations among oxidized cysteine residues on a protein sequence have been encoded into vectors named cysteine separation profiles (CSPs). Through comparisons of their CSPs, the disulfide connectivity of a test protein is inferred from a non-redundant template set. For non-redundant proteins in SwissProt 39 (SP39) sharing less than 30% sequence identity, the prediction accuracy of a fourfold cross-validation is 49%. The prediction accuracy of disulfide connectivity for proteins in SwissProt 43 (SP43) is even higher (53%). The relationship between the similarity of CSPs and the prediction accuracy is also discussed. The method proposed in this work is relatively simple and can generate higher accuracies compared to conventional methods. It may be also combined with other algorithms for further improvements in protein structure prediction. AVAILABILITY: The program and datasets are available from the authors upon request. CONTACT: cykao@csie.ntu.edu.tw.  相似文献   
10.
We have developed an evolutionary approach to predicting protein side-chain conformations. This approach, referred to as the Gaussian Evolutionary Method (GEM), combines both discrete and continuous global search mechanisms. The former helps speed up convergence by reducing the size of rotamer space, whereas the latter, integrating decreasing-based Gaussian mutations and self-adaptive Gaussian mutations, continuously adapts dihedrals to optimal conformations. We tested our approach on 38 proteins ranging in size from 46 to 325 residues and showed that the results were comparable to those using other methods. The average accuracies of our predictions were 80% for chi(1), 66% for chi(1 + 2), and 1.36 A for the root mean square deviation of side-chain positions. We found that if our scoring function was perfect, the prediction accuracy was also essentially perfect. However, perfect prediction could not be achieved if only a discrete search mechanism was applied. These results suggest that GEM is robust and can be used to examine the factors limiting the accuracy of protein side-chain prediction methods. Furthermore, it can be used to systematically evaluate and thus improve scoring functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号