首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   3篇
  国内免费   1篇
  2021年   2篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   3篇
  2006年   1篇
  2003年   2篇
  2002年   6篇
  2001年   1篇
  1998年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1975年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
1.
The structure and evolution of the spider monkey delta-globin gene   总被引:1,自引:0,他引:1  
We have isolated the delta-globin gene of the New-World spider monkey, Ateles geoffroyi, and compared its nucleotide sequence with those of other primate delta- and beta-globin genes. Among primate delta-globin genes, the rate of nonsynonymous substitutions is much less than the rate of synonymous substitutions. This suggests that primate delta- globin genes may remain under evolutionary conservation, perhaps because hemoglobin A2 has an as yet unknown physiological importance.   相似文献   
2.
Summary Ultrastructural morphometric analysis was used to study time-dependent variations in macro and microautophagy in rat hepatocytes. Except during periods of shortterm starvation for up to 24 h, animals were kept under standardized conditions of food intake.In hepatocytes of meal-fed rats the volume fraction of macroautophagic vacuoles is significantly higher at 23:00 h, i.e., immediately before food intake, compared to 11:00 h, i.e., 12 h following feeding. During fasting, macroautophagy drops to a low level.Microautophagic vacuoles in hepatocytes of meal-fed rats, sacrificed at 11:00 or 23:00 h respectively, do not show any significant quantitative differences. However, during 12 h of starvation, the volume fraction of microautophagic vacuoles rises significantly, whereas the numerical density remains constant. Subsequently, during the second 12-h period of fasting, the volume fraction of microautophagic vacuoles remains unchanged, but the numerical density increases. Over a period of 24 h of starvation the volume fraction of the total lysosomal system does not change significantly, whereas the numerical density rises.The time-dependent changes of the macroautophagic vacuolar system correlate with the circadian, food-related variations in the protein content of individual hepatocytes from meal-fed animals. The increase in volume fraction and thereafter in number of microautophagic vacuoles, as observed during starvation, coincides with a large decrease in protein content of individual hepatocytes.  相似文献   
3.
Summary The development of fibrosis in the liver of 16 rats treated for 1, 2, 3 or 4 weeks with CCl4, has been followed with chemical hydroxyproline determination and histophotometric analysis of histological sections stained with Sirius Red F3BA in saturated aqueous picric acid. The readings were taken with a scanning and integrating microphotometer and corrected for picric acid absorbance as a measure for mean protein mass per unit area of the section. It appearts that the integrated absorbance readings of Sirius Red absorbing material in the section show a highly significant correlation with the hydroxyproline determinations. It is concluded that picrosirius photometry can be used to give a measure of the volume density of collagen in sections. An advantage of the photometric assay is that measurements are taken on the basis of the microscopic image, so that it is also possible to estimate collagen density in a selected area, e.g. a tumour formation amidst normal tissue, or to exclude necrotic areas.  相似文献   
4.
5.
The purposes of this study were to develop and cross-validate the "best" prediction equations for estimating fat-free body mass (FFB) from bioelectrical impedance in children and youth. Predictor variables included height2/resistance (RI) and RI with anthropometric data. FFB was determined from body density (underwater weighing) and body water (deuterium dilution) (FFB-DW) and from age-corrected density equations, which account for variations in FFB water and bone content. Prediction equations were developed using multiple regression analyses in the validation sample (n = 94) and cross-validated in three other samples (n = 131). R2 and standard error of the estimate (SEE) values ranged from 0.80 to 0.95 and 1.3 to 3.7 kg, respectively. The four samples were then combined to develop a recommended equation for estimating FFB from three regression models. R2 and SEE values and coefficients of variation from these regression equations ranged from 0.91 to 0.95, 2.1 to 2.9 kg, and 5.1 to 7.0%, respectively. As a result of all cross-validation analyses, we recommend the equation FFB-DW = 0.61 RI + 0.25 body weight + 1.31, with a SEE of 2.1 kg and adjusted R2 of 0.95. This study demonstrated that RI with body weight can predict FFB with good accuracy in Whites 10-19 yr old.  相似文献   
6.
Cardiolipin is a mitochondrion-specific phospholipid that stabilizes the assembly of respiratory chain complexes, favoring full-yield operation. It also mediates key steps in apoptosis. In Barth syndrome, an X chromosome-linked cardiomyopathy caused by tafazzin mutations, cardiolipins display acyl chain modifications and are present at abnormally low concentrations, whereas monolysocardiolipin accumulates. Using immortalized lymphoblasts from Barth syndrome patients, we showed that the production of abnormal cardiolipin led to mitochondrial alterations. Indeed, the lack of normal cardiolipin led to changes in electron transport chain stability, resulting in cellular defects. We found a destabilization of the supercomplex (respirasome) I + III2 + IVn but also decreased amounts of individual complexes I and IV and supercomplexes I + III and III + IV. No changes were observed in the amounts of individual complex III and complex II. We also found decreased levels of complex V. This complex is not part of the supercomplex suggesting that cardiolipin is required not only for the association/stabilization of the complexes into supercomplexes but also for the modulation of the amount of individual respiratory chain complexes. However, these alterations were compensated by an increase in mitochondrial mass, as demonstrated by electron microscopy and measurements of citrate synthase activity. We suggest that this compensatory increase in mitochondrial content prevents a decrease in mitochondrial respiration and ATP synthesis in the cells. We also show, by extensive flow cytometry analysis, that the type II apoptosis pathway was blocked at the mitochondrial level and that the mitochondria of patients with Barth syndrome cannot bind active caspase-8. Signal transduction is thus blocked before any mitochondrial event can occur. Remarkably, basal levels of superoxide anion production were slightly higher in patients' cells than in control cells as previously evidenced via an increased protein carbonylation in the taz1Δ mutant in the yeast. This may be deleterious to cells in the long term. The consequences of mitochondrial dysfunction and alterations to apoptosis signal transduction are considered in light of the potential for the development of future treatments.  相似文献   
7.

Background  

Autonomic neuropathy is a common and serious complication of diabetes. Early detection is essential to enable appropriate interventional therapy and management. Dynamic pupillometry has been proposed as a simpler and more sensitive tool to detect subclinical autonomic dysfunction. The aim of this study was to investigate pupil responsiveness in diabetic subjects with and without cardiovascular autonomic neuropathy (CAN) using dynamic pupillometry in two sets of experiments.  相似文献   
8.
The most important physiological mechanism mediating enhanced exercise performance is increased sympathetic, beta adrenergic receptor (β‐AR), and adenylyl cyclase (AC) activity. This is the first report of decreased AC activity mediating increased exercise performance. We demonstrated that AC5 disruption, that is, knock out (KO) mice, a longevity model, increases exercise performance. Importantly for its relation to longevity, exercise was also improved in old AC5 KO. The mechanism resided in skeletal muscle rather than in the heart, as confirmed by cardiac‐ and skeletal muscle‐specific AC5 KO's, where exercise performance was no longer improved by the cardiac‐specific AC5 KO, but was by the skeletal muscle‐specific AC5 KO, and there was no difference in cardiac output during exercise in AC5 KO vs. WT. Mitochondrial biogenesis was a major mechanism mediating the enhanced exercise. SIRT1, FoxO3a, MEK, and the anti‐oxidant, MnSOD were upregulated in AC5 KO mice. The improved exercise in the AC5 KO was blocked with either a SIRT1 inhibitor, MEK inhibitor, or by mating the AC5 KO with MnSOD hetero KO mice, confirming the role of SIRT1, MEK, and oxidative stress mechanisms. The Caenorhabditis elegans worm AC5 ortholog, acy‐3 by RNAi, also improved fitness, mitochondrial function, antioxidant defense, and lifespan, attesting to the evolutionary conservation of this pathway. Thus, decreasing sympathetic signaling through loss of AC5 is not only a mechanism to improve exercise performance, but is also a mechanism to improve healthful aging, as exercise also protects against diabetes, obesity, and cardiovascular disease, which all limit healthful aging.  相似文献   
9.
一种新的肝细胞生成素(HPO)转录本及其生物学活性   总被引:3,自引:1,他引:2  
利用 5′RACE技术从人胎肝组织中分离一种新形式的肝细胞生成素 (HPO 2 0 5 )cDNA ,其编码蛋白质氨基酸序列的N端较已报道的人肝细胞生成素HPO(hepatopoietin)多 80个氨基酸 ,推测其蛋白质分子量为 2 3kD。RT PCR检测HPOmRNA在多种肝癌细胞中表达 ,Western印迹可检测到 2 3kDHPO 2 0 5表达 ,表明此种形式HPO在自然状态下存在。将构建的HPO 2 0 5真核表达载体转染入COS 7细胞 ,其表达蛋白质能够刺激HepG2肝癌细胞DNA合成 ;将HPO 2 0 5、HPO和荷空表达载体分别转染入低水平表达HPO的Bel 740 2肝癌细胞株 ,发现HPO 2 0 5比HPO具有较强的激活MAPK磷酸化的活性。细胞周期分析稳定转染HPO 2 0 5 ,HPO细胞的增殖周期也支持这一结论。这些结果表明HPO 2 0 5具有刺激肝源性细胞增殖的活性 ,并提示HPO 2 0 5可能较HPO有更强的生物学活性  相似文献   
10.
Barth syndrome is an X-linked genetic disorder caused by mutations in the tafazzin (taz) gene and characterized by dilated cardiomyopathy, exercise intolerance, chronic fatigue, delayed growth, and neutropenia. Tafazzin is a mitochondrial transacylase required for cardiolipin remodeling. Although tafazzin function has been studied in non-mammalian model organisms, mammalian genetic loss of function approaches have not been used. We examined the consequences of tafazzin knockdown on sarcomeric mitochondria and cardiac function in mice. Tafazzin knockdown resulted in a dramatic decrease of tetralinoleoyl cardiolipin in cardiac and skeletal muscles and accumulation of monolysocardiolipins and cardiolipin molecular species with aberrant acyl groups. Electron microscopy revealed pathological changes in mitochondria, myofibrils, and mitochondrion-associated membranes in skeletal and cardiac muscles. Echocardiography and magnetic resonance imaging revealed severe cardiac abnormalities, including left ventricular dilation, left ventricular mass reduction, and depression of fractional shortening and ejection fraction in tafazzin-deficient mice. Tafazzin knockdown mice provide the first mammalian model system for Barth syndrome in which the pathophysiological relationships between altered content of mitochondrial phospholipids, ultrastructural abnormalities, myocardial and mitochondrial dysfunction, and clinical outcome can be completely investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号