首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
Bacterial genome segregation and cell division has been studied mostly in bacteria harbouring single circular chromosome and low-copy plasmids. Deinococcus radiodurans, a radiation-resistant bacterium, harbours multipartite genome system. Chromosome I encodes majority of the functions required for normal growth while other replicons encode mostly the proteins involved in secondary functions. Here, we report the characterization of putative P-loop ATPase (ParA2) encoded on chromosome II of D. radiodurans. Recombinant ParA2 was found to be a DNA-binding ATPase. E. coli cells expressing ParA2 showed cell division inhibition and mislocalization of FtsZ-YFP and those expressing ParA2-CFP showed multiple CFP foci formation on the nucleoid. Although, in trans expression of ParA2 failed to complement SlmA loss per se, it could induce unequal cell division in slmAminCDE double mutant. These results suggested that ParA2 is a nucleoid-binding protein, which could inhibits cell division in E. coli by affecting the correct localization of FtsZ and thereby cytokinesis. Helping slmAminCDE mutant to produce minicells, a phenotype associated with mutations in the ‘Min’ proteins, further indicated the possibility of ParA2 regulating cell division by bringing nucleoid compaction at the vicinity of septum growth.  相似文献   
2.
3.
Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs). In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15) or an exercise (n=15) group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001), VO2max (p<0.001), fasting insulin (p=0.016), homeostasis model assessment for insulin resistance (HOMA-IR) (p=0.010), area under the curve (AUC) for insulin response during the 75-g oral glucose tolerance test (p=0.002), high-molecular weight (HMW) adiponectin (p=0.016), and the PBMC mRNA levels of AdipoR1 (p<0.001) and AdipoR2 (p=0.001). The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis.  相似文献   
4.
Low intensity resistance exercise (RE) with blood flow restriction (BFR) has gained attention in the literature due to the beneficial effects on functional and morphological variables, similar to those observed during traditional RE without BFR, while the effects of BFR on post-exercise hypotension remain unclear. The aim of the present study was to compare the blood pressure (BP) response of trained normotensive individuals to RE with and without BFR. In this cross-over randomized trial, eight male subjects (23.8 ± 4 years, 74 ± 3 kg, 174 ± 4 cm) completed two exercise protocols: traditional RE (3 x 10 repetitions at 70% one-repetition maximum [1-RM]) and low intensity RE (3 x 15 repetitions at 20% 1-RM) with BFR. Blood pressure measurements were performed after 15 min of seated rest (0), immediately after and 10 min, 20 min, 30 min, 40 min, 50 min and 60 min after the experimental sessions. Similar hypotensive effects for systolic BP (SBP) were observed for both protocols (P < 0.05) after exercise, with no differences between groups (P > 0.05) and no statistically significant difference for diastolic BP (P > 0.05). These results suggest that in normotensive trained individuals, both traditional RE and RE with BFR induce hypotension for SBP, which is important to prevent cardiovascular disturbances.  相似文献   
5.
Accelerated solvent extraction (ASE) is an alternative sample extraction procedure for ochratoxin A in roasted coffee. ASE results are comparable to that of the modified Koch method, but required less sample preparation time. Furthermore, ASE gave higher quantitative values than other methods reported for extraction of ochratoxin A. In the end less harmful water could be used for extraction.  相似文献   
6.
7.
ABSTRACT: INTRODUCTION: Hemophilia A is an X linked recessive hemorrhagic disorder caused by mutations in the F8 gene that lead to qualitative and/or quantitative deficiencies of coagulation factor VIII (FVIII). Molecular diagnosis of hemophilia A is challenging because of the high number of different causative mutations that are distributed throughout the large F8 gene. Molecular studies of these mutations are essential in order to reinforce our understanding of their pathogenic effect responsible for the disorder. Aim In this study we have performed molecular analysis of 28 Tunisian hemophilia A patients and analyzed the F8 mutation spectrum. METHODS: We screened the presence of intron 22 and intron 1 inversion in severe hemophilia A patients by southern blotting and polymerase chain reaction (PCR). Detection of point mutations was performed by dHPLC/sequencing of the coding F8 gene region. We predict the potential functional consequences of novel missense mutations with bioinformatics approaches and mapping of their spatial positions on the available FVIII 3D structure. RESULTS: We identified 23 different mutations in 28 Tunisian hemophilia A patients belonging to 22 unrelated families. The identified mutations included 5 intron 22 inversions, 7 insertions, 4 deletions and 7 substitutions. In total 18 point mutations were identified, of which 9 are located in exon 14, the most mutated exonic sequence in the F8 gene. Among the 23 mutations, 8 are novel and not deposited in the HAMSTeRS database nor described in recently published articles. CONCLUSION: The mutation spectrum of Tunisian hemophilia A patients is heterogeneous with the presence of some characteristic features. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1693269827490715.  相似文献   
8.
This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo.  相似文献   
9.
Based on enzyme activity assays and metabolic responses to waterlogging of the legume Lotus japonicus, it was previously suggested that, during hypoxia, the tricarboxylic acid cycle switches to a noncyclic operation mode. Hypotheses were postulated to explain the alternative metabolic pathways involved, but as yet, a direct analysis of the relative redistribution of label through the corresponding pathways was not made. Here, we describe the use of stable isotope-labeling experiments for studying metabolism under hypoxia using wild-type roots of the crop legume soybean (Glycine max). [13C]Pyruvate labeling was performed to compare metabolism through the tricarboxylic acid cycle, fermentation, alanine metabolism, and the γ-aminobutyric acid shunt, while [13C]glutamate and [15N]ammonium labeling were performed to address the metabolism via glutamate to succinate. Following these labelings, the time course for the redistribution of the 13C/15N label throughout the metabolic network was evaluated with gas chromatography-time of flight-mass spectrometry. Our combined labeling data suggest the inhibition of the tricarboxylic acid cycle enzyme succinate dehydrogenase, also known as complex II of the mitochondrial electron transport chain, providing support for the bifurcation of the cycle and the down-regulation of the rate of respiration measured during hypoxic stress. Moreover, up-regulation of the γ-aminobutyric acid shunt and alanine metabolism explained the accumulation of succinate and alanine during hypoxia.Plants are sessile, unable to relocate when exposed to diverse environmental and seasonal stimuli, and hence must be able to respond rapidly to survive stress conditions. Flooding or waterlogging of the soil is a common environmental condition that can greatly affect crop production and quality by blocking the entry of oxygen into the soil so that roots and other belowground organs cannot maintain respiration. In recent decades, the number of extreme floodings has strongly increased, which is especially tragic because most arable land worldwide is located in regions that are threatened by regular flooding events (Voesenek and Bailey-Serres, 2015).In plant heterotrophic tissues, respiratory metabolism is composed of various pathways, including glycolysis, the mitochondrial tricarboxylic acid cycle, and the mitochondrial electron transport chain. Under normal conditions, the conversion of Glc to pyruvate in the cytosol involves an initial input of ATP and produces the reduced cofactor NADH. The reactions of the tricarboxylic acid cycle occur within the mitochondrial matrix and lead to the complete oxidation of pyruvate, moving electrons from organic acids to the oxidized redox cofactors NAD+ and FAD, forming the reducing equivalents NADH and FADH2 and concomitantly releasing carbon dioxide (Tovar-Méndez et al., 2003; Millar et al., 2011). Finally, the reduced cofactors generated during glycolysis and the tricarboxylic acid cycle are subsequently oxidized by the mitochondrial electron transport chain to fuel ATP synthesis by a process known as oxidative phosphorylation (Fernie et al., 2004; Plaxton and Podesta, 2006). The tricarboxylic acid cycle turnover rate depends greatly on the rate of NADH reoxidation by the mitochondrial electron transport chain and on the cellular rate of ATP utilization (Plaxton and Podesta, 2006). Besides supporting ATP synthesis, the reactions of the tricarboxylic acid cycle also contribute to the production of key metabolic intermediates for use in many other fundamental biosynthetic processes elsewhere in the cell (Fernie et al., 2004; Sweetlove et al., 2010; van Dongen et al., 2011; Araújo et al., 2012). Nevertheless, the control and regulation of the carbon flux through the tricarboxylic acid cycle are still poorly understood in plants, and noncyclic modes have been described to operate under certain circumstances (Rocha et al., 2010; Sweetlove et al., 2010; Araújo et al., 2012).Upon hypoxia, respiratory energy (ATP) production via oxidative phosphorylation by the mitochondrial electron transport chain goes down. To compensate for this, the glycolytic flux increases and Glc is consumed faster in an attempt to produce ATP via the glycolytic pathway, a process known as the Pasteur effect. To survive short-term hypoxia during flooding or waterlogging, plants must generate sufficient ATP and regenerate NADP+ and NAD+, which are required for glycolysis (Narsai et al., 2011; van Dongen et al., 2011). In addition to the accumulation of ethanol and lactate in oxygen-deprived plant tissues, metabolites such as Ala, succinate, and γ-aminobutyric acid (GABA) have also been shown to accumulate (Sousa and Sodek, 2003; Kreuzwieser et al., 2009; van Dongen et al., 2009; Rocha et al., 2010; Zabalza et al., 2011), although hardly anything is known about the fate of these products of hypoxic metabolism. However, the relative abundance of these products of hypoxic metabolism varies between plant species, genotypes, and tissues and can change throughout the course of oxygen limitation stress as well (Narsai et al., 2011).A model describing metabolic changes during hypoxia has been described previously for waterlogged roots of the highly flood-tolerant model crop legume Lotus japonicus (Rocha et al., 2010): upon waterlogging, the rate of pyruvate production is enhanced due to the activation of glycolysis (Pasteur effect) and the concomitant production of ATP via substrate-level phosphorylation. At the same time, the fermentation pathway is activated with the accumulation of lactate via lactate dehydrogenase and ethanol via two subsequent reactions catalyzed by pyruvate decarboxylase and alcohol dehydrogenase (Tadege et al., 1999). The amount of pyruvate produced can be reduced via alanine aminotransferease (AlaAT), which catalyzes the reversible reaction interconverting pyruvate and Glu to Ala and 2-oxoglutarate (2OG). Concomitantly, 2OG was suggested to reenter the tricarboxylic acid cycle to be used to produce another ATP and also succinate, which accumulates in the cell (Rocha et al., 2010). This Ala pathway provides a means for the role of Ala accumulation during hypoxia via reorganization of the tricarboxylic acid cycle. Furthermore, given that the use of this strategy prevents pyruvate accumulation, the continued operation of glycolysis during waterlogging can occur.It should be noted, however, that measurements of metabolite levels alone do not provide information about the actual activity of the metabolic pathways involved. Furthermore, the previous studies did not reveal which enzymes of the tricarboxylic acid cycle change their activity that leads to reorganization of the tricarboxylic acid cycle. To overcome this, analysis of metabolism using isotope-labeled substrates has proven to be essential for understanding the control and regulation of metabolic networks, and it has often been observed that significant changes in carbon flow are sometimes associated with only small adjustments in metabolite abundance (Schwender et al., 2004; Ratcliffe and Shachar-Hill, 2006). Metabolomics studies that require extensive metabolite labeling utilize uniformly labeled stable isotope tracers. Alternatively, detailed analysis of central carbon metabolism can make use of positional labeling as well. Following the extraction of labeled metabolites, the 13C label redistribution is measured usually with NMR or gas chromatography-mass spectrometry methods (Jorge et al., 2015). Schwender and Ohlrogge (2002) used both labeling approaches to investigate embryo development in Brassica napus seeds. While uniformly labeled [13C6]Glc and [13C12]Suc were applied to determine the metabolic flux through the major pathways of carbon metabolism, positionally labeled [1,2-13C]Glc was used to specifically outline the glycolytic/oxidative pentose phosphate pathway network during embryo development (Schwender and Ohlrogge, 2002). Gas chromatography-mass spectrometry analysis was used in this study to evaluate the 13C enrichment and isotopomer composition. In earlier studies of hypoxic metabolism, positionally labeled [1-13C]Glc was used to specifically investigate energy metabolism and pH regulation in hypoxic maize (Zea mays) root tips (Roberts et al., 1992; Edwards et al., 1998).In this study, we performed stable isotope labeling experiments using wild-type soybean (Glycine max) roots in order to better understand the dynamics of metabolism in operation in plant cells under hypoxic conditions. For this, we used fully labeled 13C and 15N tracers rather than positional labeling, as this allowed us to cover a broad view of the central carbon and nitrogen metabolic network. The labeling pattern of metabolites was subsequently measured with gas chromatography-time of flight-mass spectrometry (GC-TOF-MS). Our studies confirm the activity of Ala metabolism while revealing the parallel activity of the GABA shunt. The results provide evidence that the bifurcation of the tricarboxylic acid cycle results from the inhibition of the tricarboxylic acid cycle enzyme succinate dehydrogenase (SDH), also known as complex II of the mitochondrial electron transport chain (mETC).  相似文献   
10.
The pathological effects of exposure to an electromagnetic field (EMF) during adolescence may be greater than those in adulthood. We investigated the effects of exposure to 900 MHz EMF during adolescence on male adult rats. Twenty-four 21-day-old male rats were divided into three equal groups: control (Cont-Gr), sham (Shm-Gr) and EMF-exposed (EMF-Gr). EMF-Gr rats were placed in an EMF exposure cage (Plexiglas cage) for 1 h/day between postnatal days 21 and 59 and exposed to 900 MHz EMF. Shm-Gr rats were placed inside the Plexiglas cage under the same conditions and for the same duration, but were not exposed to EMF. All animals were sacrificed on postnatal day 60 and the hearts were extracted for microscopic and biochemical analyses. Biochemical analysis showed increased levels of malondialdehyde and superoxide dismutase, and reduced glutathione and catalase levels in EMF-Gr compared to Cont-Gr animals. Hematoxylin and eosin stained sections from EMF-Gr animals exhibited structural changes and capillary congestion in the myocardium. The percentage of apoptotic myocardial cells in EMF-Gr was higher than in either Shm-Gr or Cont-Gr animals. Transmission electron microscopy of myocardial cells of EMF-Gr animals showed altered structure of Z bands, decreased myofilaments and pronounced vacuolization. We found that exposure of male rats to 900 MHz EMF for 1 h/day during adolescence caused oxidative stress, which caused structural alteration of male adolescent rat heart tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号