首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   1篇
  86篇
  2021年   1篇
  2018年   1篇
  2016年   2篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1978年   2篇
  1966年   5篇
  1965年   2篇
  1964年   3篇
  1963年   8篇
  1962年   6篇
  1961年   6篇
  1960年   10篇
  1959年   5篇
  1955年   2篇
  1940年   1篇
  1935年   2篇
  1925年   1篇
排序方式: 共有86条查询结果,搜索用时 0 毫秒
1.
2.
    
An estimate of the risk or prevalence ratio, adjusted for confounders, can be obtained from a log binomial model (binomial errors, log link) fitted to binary outcome data. We propose a modification of the log binomial model to obtain relative risk estimates for nominal outcomes with more than two attributes (the \"log multinomial model\"). Extensive data simulations were undertaken to compare the performance of the log multinomial model with that of an expanded data multinomial logistic regression method based on the approach proposed by Schouten et al. (1993) for binary data, and with that of separate fits of a Poisson regression model based on the approach proposed by Zou (2004) and Carter, Lipsitz and Tilley (2005) for binary data. Log multinomial regression resulted in \"inadmissable\" solutions (out-of-bounds probabilities) exceeding 50% in some data settings. Coefficient estimates by the alternative methods produced out-of-bounds probabilities for the log multinomial model in up to 27% of samples to which a log multinomial model had been successfully fitted. The log multinomial coefficient estimates generally had lesser relative bias and mean squared error than the alternative methods. The practical utility of the log multinomial regression model was demonstrated with a real data example. The log multinomial model offers a practical solution to the problem of obtaining adjusted estimates of the risk ratio in the multinomial setting, but must be used with some care and attention to detail.  相似文献   
3.
4.
5.
    
Generalized linear models (GLM) with a canonical logit link function are the primary modeling technique used to relate a binary outcome to predictor variables. However, noncanonical links can offer more flexibility, producing convenient analytical quantities (e.g., probit GLMs in toxicology) and desired measures of effect (e.g., relative risk from log GLMs). Many summary goodness‐of‐fit (GOF) statistics exist for logistic GLM. Their properties make the development of GOF statistics relatively straightforward, but it can be more difficult under noncanonical links. Although GOF tests for logistic GLM with continuous covariates (GLMCC) have been applied to GLMCCs with log links, we know of no GOF tests in the literature specifically developed for GLMCCs that can be applied regardless of link function chosen. We generalize the Tsiatis GOF statistic originally developed for logistic GLMCCs, (), so that it can be applied under any link function. Further, we show that the algebraically related Hosmer–Lemeshow () and Pigeon–Heyse (J2) statistics can be applied directly. In a simulation study, , , and J2 were used to evaluate the fit of probit, log–log, complementary log–log, and log models, all calculated with a common grouping method. The statistic consistently maintained Type I error rates, while those of and J2 were often lower than expected if terms with little influence were included. Generally, the statistics had similar power to detect an incorrect model. An exception occurred when a log GLMCC was incorrectly fit to data generated from a logistic GLMCC. In this case, had more power than or J2.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号