首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   331篇
  免费   31篇
  362篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   17篇
  2014年   13篇
  2013年   8篇
  2012年   16篇
  2011年   12篇
  2010年   16篇
  2009年   21篇
  2008年   10篇
  2007年   13篇
  2006年   13篇
  2005年   15篇
  2004年   16篇
  2003年   5篇
  2002年   11篇
  2001年   13篇
  2000年   3篇
  1999年   9篇
  1998年   10篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   8篇
  1990年   10篇
  1989年   5篇
  1988年   3篇
  1987年   5篇
  1986年   6篇
  1985年   7篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1978年   4篇
  1977年   7篇
  1976年   3篇
  1975年   4篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
排序方式: 共有362条查询结果,搜索用时 0 毫秒
1.
2.
Pyrrolnitrin has been reported to inhibit Bacillus megaterium primarily by forming complexes with phospholipids and to block electron transfer of Saccharomyces cerevisiae between succinate or reduced nicotinamide adenine dinucleotide (NADH) and coenzyme Q. We found that pyrrolnitrin inhibited respiration of conidia of Microsporum gypseum. In mitochondrial preparations, pyrrolnitrin strongly inhibited respiration and the rotenone-sensitive NADH-cytochrome c reductase. The rotenone-insensitive NADH-cytochrome c reductase, the succinate-cytochrome c reductase, and the reduction of dichlorophenolindophenol by either NADH or succinate were inhibited to a lesser extent. However, the activity of cytochrome oxidase was not affected by pyrrolnitrin. The extent of reduction of flavoproteins by NADH and succinate, measured at 465 - 510 nm, was unaltered; however, the reduction of cytochrome b, measured at 560 - 575 nm, was partially inhibited by pyrrolnitrin. The level of totally reduced cytochrome b was restored with antimycin A. We, therefore, concluded that the primary site of action of this antifungal antibiotic is to block electron transfer between the flavoprotein of the NADH-dehydrogenase and cytochrome b segment of the respiratory chain of M. gypseum.  相似文献   
3.
4.
Lipopolysaccharide is strongly associated with septic shock, leading to multiple organ failure. It can activate monocytes and macrophages to release proinflammatory mediators such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), and nitric oxide (NO). The present experiments were designed to induce endotoxin shock by an intravenous injection ofKlebsiella pneumoniae lipopolysaccharide (LPS, 10 mg/kg) in conscious rats. Arterial pressure and heart rate (HR) were continuously monitored for 48 h after LPS administration. N-Acetyl-cysteine was used to study its effects on organ damage. Biochemical substances were measured to reflect organ functions. Biochemical factors included blood urea nitrogen (BUN), creatinine (Cre), lactic dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transferase (GOT), alanine transferase (GPT), TNF-, IL-1, methyl guanidine (MG), and nitrites/nitrates. LPS caused significant increases in blood BUN, Cre, LDH, CPK, GOT, GPT, TNF-, IL-1, MG levels, and HR, as well as a decrease in mean arterial pressure and an elevation of nitrites/nitrates. N-Acetylcysteine suppressed the release of TNF-, IL-1, and MG, but enhanced NO production. These actions ameliorate LPS-induced organ damage in conscious rats. The beneficial effects may suggest a potential chemopreventive effect of this compound in sepsis prevention and treatment.  相似文献   
5.
The relationship between intracellular lysosomal rupture and cell death caused by silica was studied in P388d(1) macrophages. After 3 h of exposure to 150 μg silica in medium containing 1.8 mM Ca(2+), 60 percent of the cells were unable to exclude trypan blue. In the absence of extracellular Ca(2+), however, all of the cells remained viable. Phagocytosis of silica particles occurred to the same extent in the presence or absence of Ca(2+). The percentage of P388D(1) cells killed by silica depended on the dose and the concentration of Ca(2+) in the medium. Intracellular lyosomal rupture after exposure to silica was measured by acridine orange fluorescence or histochemical assay of horseradish peroxidase. With either assay, 60 percent of the cells exposed to 150 μg silica for 3 h in the presence of Ca(2+) showed intracellular lysosomal rupture, was not associated with measureable degradation of total DNA, RNA, protein, or phospholipids or accelerated turnover of exogenous horseradish peroxidase. Pretreatment with promethazine (20 μg/ml) protected 80 percent of P388D(1) macrophages against silica toxicity although lysosomal rupture occurred in 60-70 percent of the cells. Intracellular lysosomal rupture was prevented in 80 percent of the cells by pretreatment with indomethacin (5 x 10(-5)M), yet 40-50 percent of the cells died after 3 h of exposure to 150 μg silica in 1.8 mM extracellular Ca(2+). The calcium ionophore A23187 also caused intracellular lysosomal rupture in 90-98 percent of the cells treated for 1 h in either the presence or absence of extracellular Ca(2+). With the addition of 1.8 mM Ca(2+), 80 percent of the cells was killed after 3 h, whereas all of the cells remained viable in the absence of Ca(2+). These experiments suggest that intracellular lysosomal rupture is not causally related to the cell death cause by silica or A23187. Cell death is dependent on extracellular Ca(2+) and may be mediated by an influx of these ions across the plasma membrane permeability barrier damaged directly by exposure to these toxins.  相似文献   
6.
7.
8.
9.
10.
The small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae) is reported to have the endosymbiont Wolbachia, which shows a strong cytoplasmic incompatibility (CI) between infected males and uninfected females. In the 2000s, female‐biased L. striatellus populations were found in Taiwan, and this sex ratio distortion was the result of male‐killing induced by the infection of another endosymbiont, Spiroplasma. Spiroplasma infection is considered to negatively affect both L. striatellus and Wolbachia because the male‐killing halves the offspring of L. striatellus and hinders the spread of Wolbachia infection via CI. Spiroplasma could have traits that increase the fitness of infected L. striatellus and/or coexisting organisms because the coinfection rates of Wolbachia and Spiroplasma were rather high in some areas. In this study, we investigated the influences of the infection of these two endosymbionts on the development, reproduction, and insecticide resistance of L. striatellus in the laboratory. Our results show that the single‐infection state of Spiroplasma had a negative influence on the fertility of L. striatellus, while the double‐infection state had no significant influence. At late nymphal and adult stages, the abundance of Spiroplasma was lower in the double‐infection state than in the single‐infection state. In the double‐infection state, the reduction of Spiroplasma density may be caused by competition between the two endosymbionts, and the negative influence of Spiroplasma on the fertility of host may be relieved. The resistance of L. striatellus to four insecticides was compared among different infection states of endosymbionts, but Spiroplasma infection did not contribute to increase insecticide resistance. Because positive influences of Spiroplasma infection were not found in terms of the development, reproduction, and insecticide resistance of L. striatellus, other factors improving the fitness of Spiroplasma‐infected L. striatellus may be related to the high frequency of double infection in some L. striatellus populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号