首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1992年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
2.
The phenology of sprouts (>1 year old, up to 1.5 m in height) and seedlings (<1 year old) of six woody species (four deciduous, one brevi-deciduous, and one evergreen) was examined during the dry season in a tropical deciduous forest of South India. Xylem water potential (x), leaf relative water content (RWC; % turgid weight), and xylem specific conductivity (K S; kg s–1 m–1 MPa–1) of sprouts were measured on two occasions during the dry season. In addition, K S of seedlings (<1 year old) of one deciduous and one evergreen species was determined to allow comparison with sprouts. x of deciduous species was significantly higher at the second sampling date and was accompanied by a significant increase in K S and RWC, while the brevi-deciduous and evergreen species did not show any difference in x. Seedlings of Terminalia crenulata (deciduous) and Ixora parviflora (evergreen) had significantly lower K S compared to sprouts, while seedlings of all four deciduous species shed their leaves much earlier in the dry season than did conspecific sprouts. More favorable water relations of sprouts compared to seedlings during the peak of the dry season may explain the lower rates of die-back and mortality of sprouts observed in dry deciduous forests of India.
This revised version was published online in May 2005 with corrections to Received-/Accepted-dates.  相似文献   
3.
4.
Understory light is known as one of the most important environmental predictors of growth response of woody species. Hence, the primary objective of most forest management practices is optimizing that resource for understory seedlings. In this study, growth responses of Quercus castaneifolia seedlings from five different provenances from west to east of the Hyrcanian forest were investigated along their ecological gradients (from high to low precipitation). An experimental design was executed under controlled conditions at eight different irradiance levels (10, 20, 30, 40, 50, 60, 70 and 100 % full irradiance). Results showed that the irradiance is probably the most important determinant of variation in seedling characteristics. Among all investigated variables, variability in seedling size was affected significantly by provenance, while seedling morphology and their architectural response was affected by different levels of irradiance in a curvilinear manner. The biggest changes were observed at lowest irradiance levels (10–20 %) while at higher irradiance (70–100 %) the curves flatten. It was shown that, unlike at low irradiance levels, there is little capacity in seedling morphology to acclimatize with high irradiance intensity. Attaining maximal biomass varies across provenances and irradiance gradient. The highest biomass for the five provenances could be ranked as follows: 20–60 % and 50–60 % for the wetter and drier provenances, respectively. These results demonstrated that the light requirement increases from wetter to drier provenances, with a negative relationship between light requirement and precipitation regime. Different responses to irradiance levels may be the result of genetic adaptation to the ecological conditions prevailing in native habitat, especially precipitation regime.  相似文献   
5.
6.
BassiriRad  Hormoz  Prior  Stephen A.  Norby  Rich J.  Rogers  Hugo H. 《Plant and Soil》1999,217(1-2):195-204
Models describing plant and ecosystem N cycles require an accurate assessment of root physiological uptake capacity for NH 4 + and NO 3 - under field conditions. Traditionally, rates of ion uptake in field-grown plants are determined by using excised root segments incubated for a short period in an assay solution containing N either as a radioactive or stable isotope tracer (e.g., 36ClO3 as a NH 4 + analogue, 14CH3NH3 as an NO 3 - analogue or 15NH 4 + and 15NO 3 - ). Although reliable, this method has several drawbacks. For example, in addition to radioactive safety issues, purchase and analysis of radioactive and stable isotopes is relatively expensive and can be a major limitation. More importantly, because excision effectively interrupts exchange of compounds between root and shoot (e.g., carbohydrate supply to root and N transport to shoot), the assay must be conducted quickly to avoid such complications. Here we present a novel field method for simultaneous measurements of NH 4 + and NO 3 - uptake kinetics in intact root systems. The application of this method is demonstrated using two tree species; red maple (Acer rubrum) and sugar maple (Acer saccharum) and two crop species soybean (Glycine max) and sorghum (Sorghum bicolor). Plants were grown in open-top chambers at either ambient or elevated levels of atmospheric CO2 at two separate US national sites involved in CO2 research. Absolute values of net uptake rates and the kinetic parameters determined by our method were found to be in agreement with the literature reports. Roots of the crop species exhibited a greater uptake capacity for both N forms relative to tree species. Elevated CO2 did not significantly affect kinetics of N uptake in species tested except in red maple where it increased root uptake capacity, V, for NH 4 + . The application, reliability, advantages and disadvantages of the method are discussed in detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
7.
8.
Lead (Pb) not only negatively alters plant growth and yield but may also have potentially toxic risks to human health. Nevertheless, the interaction between rice (Oryza sativa L.) plants and the molecular cell dynamics induced by lead-methyl jasmonate (MJ) remains unknown. Here, plants were hydroponically exposed to Pb (150 and 300 µM) alone or in combination with 0.5 and 1 µM MJ. The application of MJ modulated the expression of the HMAs, PCS1, PCS2 and ABCC1 genes, thereby immobilizing the Pb in the roots and lessening its translocation to the aerial parts of the rice plant. The supplementation of MJ improved the growth and yield of Pb-stressed rice by adjusting the proline and chlorophyll metabolism, increasing the phytochelatins (PCs) accumulation and diminishing the accumulation of Pb in the shoots. the application of MJ alleviated the oxidative stress of rice plants exposed to Pb toxicity by enhancing the activity of antioxidant enzymes and enzymes of the glyoxalase system (glyoxalase I and II) and decreasing the endogenous levels of malondialdehyde (MDA), hydrogen peroxide (H2O2) and methylglyoxal (MG). Therefore, the results of the present study could provide a molecular insight and cellular interplay scheme for the development of a promising strategy in Pb-contaminated areas to produce healthy food.  相似文献   
9.
10.
Leaf 15N signature is a powerful tool that can provide an integrated assessment of the nitrogen (N) cycle and whether it is influenced by rising atmospheric CO2 concentration. We tested the hypothesis that elevated CO2 significantly changes foliage δ15N in a wide range of plant species and ecosystem types. This objective was achieved by determining the δ15N of foliage of 27 field‐grown plant species from six free‐air CO2 enrichment (FACE) experiments representing desert, temperate forest, Mediterranean‐type, grassland prairie, and agricultural ecosystems. We found that within species, the δ15N of foliage produced under elevated CO2 was significantly lower (P<0.038) compared with that of foliage grown under ambient conditions. Further analysis of foliage δ15N by life form and growth habit revealed that the CO2 effect was consistent across all functional groups tested. The examination of two chaparral shrubs grown for 6 years under a wide range of CO2 concentrations (25–75 Pa) also showed a significant and negative correlation between growth CO2 and leaf δ15N. In a select number of species, we measured bulk soil δ15N at a depth of 10 cm, and found that the observed depletion of foliage δ15N in response to elevated CO2 was unrelated to changes in the soil δ15N. While the data suggest a strong influence of elevated CO2 on the N cycle in diverse ecosystems, the exact site(s) at which elevated CO2 alters fractionating processes of the N cycle remains unclear. We cannot rule out the fact that the pattern of foliage δ15N responses to elevated CO2 reported here resulted from a general drop in δ15N of the source N, caused by soil‐driven processes. There is a stronger possibility, however, that the general depletion of foliage δ15N under high CO2 may have resulted from changes in the fractionating processes within the plant/mycorrhizal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号