首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   7篇
  2022年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   5篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   6篇
  2009年   4篇
  2008年   4篇
  2007年   7篇
  2006年   10篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
  1985年   1篇
  1983年   2篇
  1980年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有106条查询结果,搜索用时 62 毫秒
1.
The microvascular endothelial network is essential for bone formation and regeneration. In this context, endothelial cells not only support vascularization but also influence bone physiology via cell contact‐dependent mechanisms. In order to improve vascularization and osteogenesis in tissue engineering applications, several strategies have been developed. One promising approach is the coapplication of endothelial and adipose derived stem cells (ADSCs). In this study, we aimed at investigating the best ratio of human umbilical vein endothelial cells (HUVECs) and osteogenic differentiated ADSCs with regard to proliferation, apoptosis, osteogenesis and angiogenesis. For this purpose, cocultures of ADSCs and HUVECs with ratios of 25%:75%, 50%:50% and 75%:25% were performed. We were able to prove that cocultivation supports proliferation whereas apoptosis was unidirectional decreased in cocultured HUVECs mediated by a p‐BAD‐dependent mechanism. Moreover, coculturing ADSCs and HUVECs stimulated matrix mineralization and the activity of alkaline phosphatase (ALP). Increased gene expression of the proangiogenic markers eNOS, Flt, Ang2 and MMP3 as well as sprouting phenomena in matrigel assays proved the angiogenic potential of the coculture. In summary, coculturing ADSCs and HUVECs stimulates proliferation, cell survival, osteogenesis and angiogenesis particularly in the 50%:50% coculture.  相似文献   
2.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
3.
Whereas in severe burns cultured human epithelial cells may well serve as a life saving method, the true value of tissue-engineered skin products in chronic wound care has yet to be clearly defined. Among other well-known clinical problems, the engraftment rate of commercially available multilayered "sheet grafts" has been shown to vary extremely. Adherence of transplanted cells to the wound bed--especially in the presence of potential wound contamination-- is one of the crucial aspects of this technique. Keratinocyte suspensions in a natural fibrin sealant matrix can potentially treat a variety of skin defects. In acute burn wounds, as well as in chronic wounds the clinical application of this type of tissue-engineered skin substitute demonstrates the capacity of cultured human autologous keratinocytes in a fibrin sealant matrix to adhere to wound beds, attach and spread over the wound resulting in reepithelialization of both acute and chronic wounds. In full thickness burns the combination of this new tool with allogenic dermis is a promising option to achieve complete dermal-epidermal reconstitution by means of tissue engineering and guided tissue repair. When transferring this technique into the treatment of chronic wounds we found an optimal preparation of such recipient wound beds to be crucial to the success. The additional application of continuous negative pressure (vacuum therapy) and preliminary chip skin grafting to optimally prepare the recipient site may be helpful tools to achieve such well-prepared and graftable surfaces. Prospective controlled comparative studies should be designed to further assess the clinical efficacy of this technique.  相似文献   
4.
In this work the biocompatibility of osteosynsthesis plates treated with plasma immersion ion implantation (PIII) was tested using a rat model. Small rods (? 0.9 mm, and length 10 mm) prepared from different materials-pure Ti, anodised Ti, and two NiTi alloys (SE 508, and SM 495)-were implanted with oxygen by PIII to form a rutile surface layer and subsequently inserted into rat femurs, together with a control group of untreated samples. The results of the biomechanical tests correlate with the histological results, and show that plasma immersion ion implantation leads to an increase of biocompatibility and osseointegration of titanium and NiTi, albeit no improvement of the (bad) biocompatibility of the anodised Ti. Despite the layer thickness of up to 0.5 microm a strong influence of the base material is still present.  相似文献   
5.
The use of foetal liver cells (FLC) in the context of hepatic tissue engineering might permit efficient in vitro expansion and cryopreservation in a cell bank. A prerequisite for successful application of bioartificial liver tissue is sufficient initial vascularization. In this study, we evaluated the transplantation of fibrin gel-immobilized FLC in a vascularized arterio-veno-venous (AV)-loop model. FLC were isolated from embryonic/foetal (ED 16) rat livers and were enriched by using magnetic cell sorting (MACS). After cryopreservation, FLC were labelled by pkh-26. Cells were transplanted in a fibrin matrix into a subcutaneous chamber containing a microsurgically created AV-loop in the femoral region of the recipient rat. The chambers were explanted after 14 days. Subcutaneous implants without an AV-loop and cell-free implants served as controls. Fluorescence microscopy of the constructs was used to identify pkh-26+- donor cells. Characterization was performed by RT-PCR and immunhistology (IH) for CK-18 and CD31. Transplantation of FLC using the AV-loop permitted a neo -tissue formation in the fibrin matrix. A high-density vascularization was observed in the AV-loop constructs as shown by CD31 IH. Viable foetal donor cells were detected which expressed CK-18. FLC can be successfully used for heterotopic transplantation. Fibrin matrix permits rapid blood vessel ingrowth from the AV-loop and supports engraftment of FLC. It is therefore an appropriate environment for hepatocyte transplantation in combination with microsurgical vascularization strategies. Transplantation of fibrin gel-immobilized FLC may be a promising approach for the development of highly vascularized in vivo tissue-engineering-based liver support systems.  相似文献   
6.
The modulation of angiogenic processes in matrices is of great interest in tissue engineering. We assessed the angiogenic effects of fibrin-immobilized VEGF and bFGF in an arteriovenous loop (AVL) model in 22 AVLs created between the femoral artery and vein in rats. The loops were placed in isolation chambers and were embedded in 500 microL fibrin gel (FG) (group A) or in 500 microL FG loaded with 0.1 ng/microL VEGF and 0.1 ng/microL bFGF (group B). After two and four weeks specimens were explanted and investigated using histological, morphometrical, and ultramorphological [scanning electron microscope (SEM) of vascular corrosion replicas] techniques. In both groups, the AVL induced formation of densely vascularized connective tissue with differentiated and functional vessels inside the fibrin matrix. VEGF and bFGF induced significantly higher absolute and relative vascular density and a faster resorption of the fibrin matrix. SEM analysis in both groups revealed characteristics of an immature vascular bed, with a higher vascular density in group B. VEGF and bFGF efficiently stimulated sprouting of blood vessels in the AVL model. The implantation of vascular carriers into given growth factor-loaded matrix volumes may eventually allow efficient generation of axially vascularized, tissue-engineered composites.  相似文献   
7.
Vascularization of bioartificial matrices is crucial for successful tissue engineering. Endothelial progenitor cells (EPC) have shown vascularization potential in ischemic conditions and may also support blood vessel formation in tissue-engineered matrices. The aim of our study was to investigate the impact of a well-characterized murine embryonal EPC line (T17b-EPC) on vascularization and fibrovascular granulation tissue formation after suspension in a fibrine matrix followed by subcutaneous implantation in a separation chamber in rats. EPC were fluorescently labelled in vitro prior to implantation. After 3, 7 or 14 days, animals were killed followed by explantation and histological analysis of the constructs. Before the end of the experiment, Bandeirea Simplicifolia lectin was intravenously injected to mark the vascular ingrowth into the implanted constructs. The transplanted cells were histologically detected at all time-points and located almost exclusively within the fibrin matrix at day 3 but the number of cells in the clot continuously decreased over day 7 to day 14. Conversely, cells were detected within the newly formed granulation tissue in increasing numbers from day 3 over day 7 to day 14. Transplanted cells were also found in the intermuscular septa. Cell viability was confirmed by use of an EPC clone expressing β-galactosidase. Fluorescence microscopy demonstrated integration of the transplanted cells in newly formed blood vessels within the fibrovascular granulation tissue adjacent to the fibrin clot. Presence of cells in the fibrin clot lead to thicker granulation tissue and an increased blood vessel diameter compared to cell-free controls. Organ standard controls showed presence of the transplanted cells in spleens at day 14 after transplantation. In summary, EPC exhibited biological activity after subcutaneous implantation in a fibrin matrix by migration from the fibrin clot into the granulation tissue and along intermuscular septae, undergoing differentiation into mature endothelial cells and integration into newly formed blood vessels and altering fibrovascular granulation tissue development. EPC may hold promise to modulate blood vessel formation in bioartificial matrices.  相似文献   
8.
Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, (1)H nuclear magnetic resonance (NMR) and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that (1)H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These (1)H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk.  相似文献   
9.
Tissue Engineering of skeletal muscle tissue still remains a major challenge. Every neo-tissue construct of clinically relevant dimensions is highly dependent on an intrinsic vascularisation overcoming the limitations of diffusion conditioned survival. Approaches incorporating the arteriovenous-loop model might bring further advances to the generation of vascularised skeletal muscle tissue. In this study 12 syngeneic rats received transplantaion of carboxy-fluorescine diacetate-succinimidyl ester (CFDA)-labelled, expanded primary myoblasts into a previously vascularised fibrin matrix, containing a microsurgically created AV loop. As control cells were injected into fibrin-matrices without AV-loops. Intra-arterial ink injection followed by explantation was performed 2, 4 and 8 weeks after cell implantation. Specimens were evaluated for CFDA, MyoD and DAPI staining, as well as for mRNA expression of muscle specific genes. Results showed enhanced fibrin resorption in dependence of AV loop presence. Transplanted myoblasts could be detected in the AV loop group even after 8 weeks by CFDA-fluorescence, still showing positive MyoD staining. RT-PCR revealed gene expression of MEF-2 and desmin after 4 weeks on the AVloop side, whereas expression analysis of myogenin and MHC(embryo) was negative. So far myoblast injection in the microsurgical rat AV loop model enhances survival of the cells, keeping their myogenic phenotype, within pre-vascularised fibrin matrices. Probably due to the lack of potent myogenic stimuli and additionally the rapid resorption of the fibrin matrix, no formation of skeletal muscle-like tissue could be observed. Thus further studies focussing on long term stability of the matrix and the incorporation of neural stimuli will be necessary for generation of vascularised skeletal muscle tissue.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号