首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   5篇
  111篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2015年   4篇
  2014年   7篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   7篇
  2009年   6篇
  2008年   3篇
  2007年   7篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1996年   2篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有111条查询结果,搜索用时 0 毫秒
1.
Adipose‐derived stromal cells (ADSC) are increasingly used in clinical applications due to their regenerative capabilities. However, ADSC therapies show variable results. This study analysed the effects of specific factors of ex‐obese patients on ADSC functions. ADSC were harvested from abdominal tissues (N = 20) after massive weight loss. Patients were grouped according to age, sex, current and maximum body mass index (BMI), BMI difference, weight loss method, smoking and infection at the surgical site. ADSC surface markers, viability, migration, transmigration, sprouting, differentiation potential, cytokine secretion, telomere length and mtDNA copy number were analysed. All ADSC expressed CD73, CD90, CD105, while functional properties differed significantly among patients. A high BMI difference due to massive weight loss was negatively correlated with ADSC proliferation, migration and transmigration, while age, sex or weight loss method had a smaller effect. ADSC from female and younger donors and individuals after weight loss by increase of exercise and diet change had a higher activity. Telomere length, mtDNA copy number, differentiation potential and the secretome did not correlate with patient factors or cell function. Therefore, we suggest that factors such as age, sex, increase of exercise and especially weight loss should be considered for patient selection and planning of regenerative therapies.  相似文献   
2.
3.
A new modular software concept for individual numerical simulation of the human mandible using the finite element method (FEM) is presented. The main task is an individual analysis of regional stress and stress-compatibility on the basis of computed tomographic data in individual patients. Simulation should, however, also be possible in parallel with biomechanical experiments, or for further research projects. For this purpose, rapid and uncomplicated generation of the FEM model, easy modification of input data, and short computation times are required. Practical use in the clinical setting makes appreciable additional demands on the individual software components.  相似文献   
4.
Tissue Engineering of skeletal muscle tissue still remains a major challenge. Every neo-tissue construct of clinically relevant dimensions is highly dependent on an intrinsic vascularisation overcoming the limitations of diffusion conditioned survival. Approaches incorporating the arteriovenous-loop model might bring further advances to the generation of vascularised skeletal muscle tissue. In this study 12 syngeneic rats received transplantaion of carboxy-fluorescine diacetate-succinimidyl ester (CFDA)-labelled, expanded primary myoblasts into a previously vascularised fibrin matrix, containing a microsurgically created AV loop. As control cells were injected into fibrin-matrices without AV-loops. Intra-arterial ink injection followed by explantation was performed 2, 4 and 8 weeks after cell implantation. Specimens were evaluated for CFDA, MyoD and DAPI staining, as well as for mRNA expression of muscle specific genes. Results showed enhanced fibrin resorption in dependence of AV loop presence. Transplanted myoblasts could be detected in the AV loop group even after 8 weeks by CFDA-fluorescence, still showing positive MyoD staining. RT-PCR revealed gene expression of MEF-2 and desmin after 4 weeks on the AVloop side, whereas expression analysis of myogenin and MHC(embryo) was negative. So far myoblast injection in the microsurgical rat AV loop model enhances survival of the cells, keeping their myogenic phenotype, within pre-vascularised fibrin matrices. Probably due to the lack of potent myogenic stimuli and additionally the rapid resorption of the fibrin matrix, no formation of skeletal muscle-like tissue could be observed. Thus further studies focussing on long term stability of the matrix and the incorporation of neural stimuli will be necessary for generation of vascularised skeletal muscle tissue.  相似文献   
5.
6.
Whereas in severe burns cultured human epithelial cells may well serve as a life saving method, the true value of tissue-engineered skin products in chronic wound care has yet to be clearly defined. Among other well-known clinical problems, the engraftment rate of commercially available multilayered "sheet grafts" has been shown to vary extremely. Adherence of transplanted cells to the wound bed--especially in the presence of potential wound contamination-- is one of the crucial aspects of this technique. Keratinocyte suspensions in a natural fibrin sealant matrix can potentially treat a variety of skin defects. In acute burn wounds, as well as in chronic wounds the clinical application of this type of tissue-engineered skin substitute demonstrates the capacity of cultured human autologous keratinocytes in a fibrin sealant matrix to adhere to wound beds, attach and spread over the wound resulting in reepithelialization of both acute and chronic wounds. In full thickness burns the combination of this new tool with allogenic dermis is a promising option to achieve complete dermal-epidermal reconstitution by means of tissue engineering and guided tissue repair. When transferring this technique into the treatment of chronic wounds we found an optimal preparation of such recipient wound beds to be crucial to the success. The additional application of continuous negative pressure (vacuum therapy) and preliminary chip skin grafting to optimally prepare the recipient site may be helpful tools to achieve such well-prepared and graftable surfaces. Prospective controlled comparative studies should be designed to further assess the clinical efficacy of this technique.  相似文献   
7.
This study aimed to investigate the association among genetic variants of the complement pathway CFB R32Q (rs641153), C3 R102G (rs2230199), and CFH (rs1410996) with age-related macular degeneration (AMD) in a sample of the Brazilian population. In a case-control study, 484 AMD patients were classified according to the clinical age-related maculopathy grading system (CARMS) and compared to 479 unrelated controls. The genetic variants rs1410996 of complement H (CFH), rs641153 of complement factor B (CFB), and rs2230199 of complement 3 (C3) were evaluated through polymerase chain reaction (PCR) and direct sequencing. The associations between single nucleotide polymorphisms (SNPs) and AMD, adjusted by age, were assessed by using logistic regression models. A statistically significant association was observed between AMD risk and rs2230199 variant with an OR of 2.01 (P  = 0.0002) for CG individuals compared to CC individuals. Regarding the comparison of advanced AMD versus the control group, the OR was 2.12 (P = 0.0036) for GG versus AA genotypes for rs1410996 variant. Similarly, the OR for rs2230199 polymorphism was 2.3034 (P  = 5.47e-05) when comparing CG individuals to CC carriers. In contrast, the rs641153 variant showed a significant protective effect against advanced AMD for GA versus GG genotype (OR = 0.4406; P  = 0.0019). When comparing wet AMD versus controls, a significant association was detected for rs1410996 variant (OR = 2.16; P  = 0.0039) comparing carriers of the homozygous GG versus AA genotype, as well as in the comparisons of GG (OR = 3.0713; P  = 0.0046) and CG genotypes (OR = 2.2249; P  = 0.0002) versus CC genotype for rs2230199 variant, respectively. The rs641153 variant granted a significant protective effect against wet AMD for GA versus GG genotypes (OR = 0.4601; P  = 0.0044). Our study confirmed the risk association between rs2230199 and rs1410996 variants and AMD, and the protective role against AMD for rs641153 variant.  相似文献   
8.
The use of foetal liver cells (FLC) in the context of hepatic tissue engineering might permit efficient in vitro expansion and cryopreservation in a cell bank. A prerequisite for successful application of bioartificial liver tissue is sufficient initial vascularization. In this study, we evaluated the transplantation of fibrin gel-immobilized FLC in a vascularized arterio-veno-venous (AV)-loop model. FLC were isolated from embryonic/foetal (ED 16) rat livers and were enriched by using magnetic cell sorting (MACS). After cryopreservation, FLC were labelled by pkh-26. Cells were transplanted in a fibrin matrix into a subcutaneous chamber containing a microsurgically created AV-loop in the femoral region of the recipient rat. The chambers were explanted after 14 days. Subcutaneous implants without an AV-loop and cell-free implants served as controls. Fluorescence microscopy of the constructs was used to identify pkh-26+- donor cells. Characterization was performed by RT-PCR and immunhistology (IH) for CK-18 and CD31. Transplantation of FLC using the AV-loop permitted a neo -tissue formation in the fibrin matrix. A high-density vascularization was observed in the AV-loop constructs as shown by CD31 IH. Viable foetal donor cells were detected which expressed CK-18. FLC can be successfully used for heterotopic transplantation. Fibrin matrix permits rapid blood vessel ingrowth from the AV-loop and supports engraftment of FLC. It is therefore an appropriate environment for hepatocyte transplantation in combination with microsurgical vascularization strategies. Transplantation of fibrin gel-immobilized FLC may be a promising approach for the development of highly vascularized in vivo tissue-engineering-based liver support systems.  相似文献   
9.

Introduction  

Monocytes/macrophages accumulate in the rheumatoid (RA) synovium where they play a central role in inflammation and joint destruction. Identification of molecules involved in their accumulation and differentiation is important to inform therapeutic strategies. This study investigated the expression and function of chemokine receptor CCR9 in the peripheral blood (PB) and synovium of RA, non-RA patients and healthy volunteers.  相似文献   
10.
The modulation of angiogenic processes in matrices is of great interest in tissue engineering. We assessed the angiogenic effects of fibrin-immobilized VEGF and bFGF in an arteriovenous loop (AVL) model in 22 AVLs created between the femoral artery and vein in rats. The loops were placed in isolation chambers and were embedded in 500 microL fibrin gel (FG) (group A) or in 500 microL FG loaded with 0.1 ng/microL VEGF and 0.1 ng/microL bFGF (group B). After two and four weeks specimens were explanted and investigated using histological, morphometrical, and ultramorphological [scanning electron microscope (SEM) of vascular corrosion replicas] techniques. In both groups, the AVL induced formation of densely vascularized connective tissue with differentiated and functional vessels inside the fibrin matrix. VEGF and bFGF induced significantly higher absolute and relative vascular density and a faster resorption of the fibrin matrix. SEM analysis in both groups revealed characteristics of an immature vascular bed, with a higher vascular density in group B. VEGF and bFGF efficiently stimulated sprouting of blood vessels in the AVL model. The implantation of vascular carriers into given growth factor-loaded matrix volumes may eventually allow efficient generation of axially vascularized, tissue-engineered composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号