排序方式: 共有80条查询结果,搜索用时 0 毫秒
1.
2.
Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures 总被引:3,自引:2,他引:3
Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA–protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA. Crystal structures suggest that these enzymes travel along the minor groove, a process that can generate the torque or energy in remodelling processes. We review the recent structural and biochemical findings which suggest a common mechanistic basis underlies the action of many of both Snf2 family and DExx box helicases. 相似文献
3.
Differential arrangements of conserved building blocks among homologs of the Rad50/Mre11 DNA repair protein complex 总被引:5,自引:0,他引:5
de Jager M Trujillo KM Sung P Hopfner KP Carney JP Tainer JA Connelly JC Leach DR Kanaar R Wyman C 《Journal of molecular biology》2004,339(4):937-949
Structural maintenance of chromosomes (SMC) proteins have diverse cellular functions including chromosome segregation, condensation and DNA repair. They are grouped based on a conserved set of distinct structural motifs. All SMC proteins are predicted to have a bipartite ATPase domain that is separated by a long region predicted to form a coiled coil. Recent structural data on a variety of SMC proteins shows them to be arranged as long intramolecular coiled coils with a globular ATPase at one end. SMC proteins function in pairs as heterodimers or as homodimers often in complexes with other proteins. We expect the arrangement of the SMC protein domains in complex assemblies to have important implications for their diverse functions. We used scanning force microscopy imaging to determine the architecture of human, Saccharomyces cerevisiae, and Pyrococcus furiosus Rad50/Mre11, Escherichia coli SbcCD, and S.cerevisiae SMC1/SMC3 cohesin SMC complexes. Two distinct architectural arrangements are described, based on the way their components were connected. The eukaryotic complexes were similar to each other and differed from their prokaryotic and archaeal homologs. These similarities and differences are discussed with respect to their diverse mechanistic roles in chromosome metabolism. 相似文献
4.
5.
Taner Cavlar Tobias Deimling Andrea Ablasser Karl‐Peter Hopfner Veit Hornung 《The EMBO journal》2013,32(10):1440-1450
Extensive research on antiviral small molecules starting in the early 1970s has led to the identification of 10‐carboxymethyl‐9‐acridanone (CMA) as a potent type I interferon (IFN) inducer. Up to date, the mode of action of this antiviral molecule has remained elusive. Here we demonstrate that CMA mediates a cell‐intrinsic type I IFN response, depending on the ER‐resident protein STING. CMA directly binds to STING and triggers a strong antiviral response through the TBK1/IRF3 route. Interestingly, while CMA displays extraordinary activity in phosphorylating IRF3 in the murine system, CMA fails to activate human cells that are otherwise responsive to STING ligands. This failure to activate human STING can be ascribed to its inability to bind to the C‐terminal ligand‐binding domain of human STING. Crystallographic studies show that two CMA molecules bind to the central Cyclic diguanylate ( c‐diGMP)‐binding pocket of the STING dimer and fold the lid region in a fashion similar, but partially distinct, to c‐diGMP. Altogether, these results provide novel insight into ligand‐sensing properties of STING and, furthermore, unravel unexpected species‐specific differences of this innate sensor. 相似文献
6.
Enzymes that translocate nucleic acids using ATP hydrolysis include DNA and RNA helicases, viral genome packaging motors and chromatin remodeling ATPases. Recent structural analysis, in conjunction with single-molecule studies, has revealed a wealth of new insights into how these enzymes use ATP-driven conformational changes to move on nucleic acids. 相似文献
7.
Wiggenhauser PS Müller DF Melchels FP Egaña JT Storck K Mayer H Leuthner P Skodacek D Hopfner U Machens HG Staudenmaier R Schantz JT 《Cell and tissue research》2012,347(3):747-757
Adipose tissue engineering offers a promising alternative to the current surgical techniques for the treatment of soft tissue defects. It is a challenge to find the appropriate scaffold that not only represents a suitable environment for cells but also allows fabrication of customized tissue constructs, particularly in breast surgery. We investigated two different scaffolds for their potential use in adipose tissue regeneration. Sponge-like polyurethane scaffolds were prepared by mold casting with methylal as foaming agent, whereas polycaprolactone scaffolds with highly regular stacked-fiber architecture were fabricated with fused deposition modeling. Both scaffold types were seeded with human adipose tissue-derived precursor cells, cultured and implanted in nude mice using a femoral arteriovenous flow-through vessel loop for angiogenesis. In vitro, cells attached to both scaffolds and differentiated into adipocytes. In vivo, angiogenesis and adipose tissue formation were observed throughout both constructs after 2 and 4?weeks, with angiogenesis being comparable in seeded and unseeded constructs. Fibrous tissue formation and adipogenesis were more pronounced on polyurethane foam scaffolds than on polycaprolactone prototyped scaffolds. In conclusion, both scaffold designs can be effectively used for adipose tissue engineering. 相似文献
8.
Susanne Roth Mobarak Abu Mraheil Winfried Barchet Jan Böttcher Torsten Hain Sergej Geiger Yoshihiro Hayakawa Jörg H Fritz Filiz Civril Karl‐Peter Hopfner Christian Kurts Jürgen Ruland Gunther Hartmann Trinad Chakraborty Percy A Knolle 《The EMBO journal》2012,31(21):4153-4164
Immunity against infection with Listeria monocytogenes is not achieved from innate immune stimulation by contact with killed but requires viable Listeria gaining access to the cytosol of infected cells. It has remained ill‐defined how such immune sensing of live Listeria occurs. Here, we report that efficient cytosolic immune sensing requires access of nucleic acids derived from live Listeria to the cytoplasm of infected cells. We found that Listeria released nucleic acids and that such secreted bacterial RNA/DNA was recognized by the cytosolic sensors RIG‐I, MDA5 and STING thereby triggering interferon β production. Secreted Listeria nucleic acids also caused RIG‐I‐dependent IL‐1β‐production and inflammasome activation. The signalling molecule CARD9 contributed to IL‐1β production in response to secreted nucleic acids. In conclusion, cytosolic recognition of secreted bacterial nucleic acids by RIG‐I provides a mechanistic explanation for efficient induction of immunity by live bacteria. 相似文献
9.
To reveal mechanisms of DNA damage checkpoint initiation, we structurally and biochemically analyzed DisA, a protein that controls a Bacillus subtilis sporulation checkpoint in response to DNA double-strand breaks. We find that DisA forms a large octamer that consists of an array of an uncharacterized type of nucleotide-binding domain along with two DNA-binding regions related to the Holliday junction recognition protein RuvA. Remarkably, the nucleotide-binding domains possess diadenylate cyclase activity. The resulting cyclic diadenosine phosphate, c-di-AMP, is reminiscent but distinct from c-di-GMP, an emerging prokaryotic regulator of complex cellular processes. Diadenylate cyclase activity is unaffected by linear DNA or DNA ends but strongly suppressed by branched nucleic acids such as Holliday junctions. Our data indicate that DisA signals DNA structures that interfere with chromosome segregation via c-di-AMP. Identification of the diadenylate cyclase domain in other eubacterial and archaeal proteins implies a more general role for c-di-AMP in prokaryotes. 相似文献
10.