首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   14篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   10篇
  2014年   6篇
  2013年   2篇
  2012年   5篇
  2011年   8篇
  2010年   12篇
  2009年   6篇
  2008年   4篇
  2007年   11篇
  2006年   4篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1998年   6篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1972年   1篇
  1968年   1篇
排序方式: 共有126条查询结果,搜索用时 15 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
3.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
4.
Hepatic and cardiac drug adverse effects are among the leading causes of attrition in drug development programs, in part due to predictive failures of current animal or in vitro models. Hepatocytes and cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) hold promise for predicting clinical drug effects, given their human-specific properties and their ability to harbor genetically determined characteristics that underlie inter-individual variations in drug response. Currently, the fetal-like properties and heterogeneity of hepatocytes and cardiomyocytes differentiated from iPSCs make them physiologically different from their counterparts isolated from primary tissues and limit their use for predicting clinical drug effects. To address this hurdle, there have been ongoing advances in differentiation and maturation protocols to improve the quality and use of iPSC-differentiated lineages. Among these are in vitro hepatic and cardiac cellular microsystems that can further enhance the physiology of cultured cells, can be used to better predict drug adverse effects, and investigate drug metabolism, pharmacokinetics, and pharmacodynamics to facilitate successful drug development. In this article, we discuss how cellular microsystems can establish microenvironments for these applications and propose how they could be used for potentially controlling the differentiation of hepatocytes or cardiomyocytes. The physiological relevance of cells is enhanced in cellular microsystems by simulating properties of tissue microenvironments, such as structural dimensionality, media flow, microfluidic control of media composition, and co-cultures with interacting cell types. Recent studies demonstrated that these properties also affect iPSC differentiations and we further elaborate on how they could control differentiation efficiency in microengineered devices. In summary, we describe recent advances in the field of cellular microsystems that can control the differentiation and maturation of hepatocytes and cardiomyocytes for drug evaluation. We also propose how future research with iPSCs within engineered microenvironments could enable their differentiation for scalable evaluations of drug effects.  相似文献   
5.
Presence or absence of N-acetylneuraminic acid (Neu5Ac) can change a sialylated glycoprotein's serum half-life and possibly its function. We evaluated the linearity, sensitivity, reproducibility, and accuracy of a HPAEC/PAD method to determine its suitability for routine simultaneous analysis of Neu5Ac and N-glycolylneuraminic acid (Neu5Gc). An effective internal standard for this analysis is 3-deoxy-d-glycero-d- galacto-2-nonulosonic acid (KDN). We investigated the effect of the Au working electrode recession and determined that linear range and sensitivity were dependent on electrode recession. Using an electrode that was 350 &mgr;m recessed from the electrode block, the minimum detection limits of Neu5Ac, KDN, and Neu5Gc were 2, 5, and 2 pmol, respectively, and were reduced to 1, 2, and 0.5 pmol using a new electrode. The response of standards was linear from 10 to 500 pmol (r2>0.99) regardless of electrode recession. When Neu5Ac, KDN, and Neu5Gc (200 pmol each) were analyzed repetitively for 48 h, area RSDs were <3%. Reproducibility was unaffected when injections of glycoprotein neuraminidase and acid digestions were interspersed with standard injections. Area RSDs of Neu5Ac and Neu5Gc improved when the internal standard was used. We determined the precision and accuracy of this method for both a recessed and a new working electrode by analyzing Neu5Ac and Neu5Gc contents of bovine fetuin and bovine and human transferrins. Results were consistent with published values and independent of the working electrode. The sensitivity, reproducibility, and accuracy of this method make it suitable for direct routine analysis of glycoprotein Neu5Ac and Neu5Gc contents.   相似文献   
6.
Competitive antagonists of the human prolactin (hPRL) receptor are a novel class of molecules of potential therapeutic interest in the context of cancer. We recently developed the pure antagonist Del1-9-G129R-hPRL by deleting the nine N-terminal residues of G129R-hPRL, a first generation partial antagonist. We determined the crystallographic structure of Del1-9-G129R-hPRL, which revealed no major change compared with wild type hPRL, indicating that its pure antagonistic properties are intrinsically due to the mutations. To decipher the molecular bases of pure antagonism, we compared the biological, physicochemical, and structural properties of numerous hPRL variants harboring N-terminal or Gly(129) mutations, alone or combined. The pure versus partial antagonistic properties of the multiple hPRL variants could not be correlated to differences in their affinities toward the hPRL receptor, especially at site 2 as determined by surface plasmon resonance. On the contrary, residual agonism of the hPRL variants was found to be inversely correlated to their thermodynamic stability, which was altered by all the Gly(129) mutations but not by those involving the N terminus. We therefore propose that residual agonism can be abolished either by further disrupting hormone site 2-receptor contacts by N-terminal deletion, as in Del1-9-G129R-hPRL, or by stabilizing hPRL and constraining its intrinsic flexibility, as in G129V-hPRL.  相似文献   
7.

Background  

The problem of protein structure prediction consists of predicting the functional or native structure of a protein given its linear sequence of amino acids. This problem has played a prominent role in the fields of biomolecular physics and algorithm design for over 50 years. Additionally, its importance increases continually as a result of an exponential growth over time in the number of known protein sequences in contrast to a linear increase in the number of determined structures. Our work focuses on the problem of searching an exponentially large space of possible conformations as efficiently as possible, with the goal of finding a global optimum with respect to a given energy function. This problem plays an important role in the analysis of systems with complex search landscapes, and particularly in the context of ab initio protein structure prediction.  相似文献   
8.

Background  

The ab initio protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing an energy function; it is one of the most important and challenging problems in biochemistry, molecular biology and biophysics. The ab initio protein folding problem is computationally challenging and has been shown to be -hard even when conformations are restricted to a lattice. In this work, we implement and evaluate the replica exchange Monte Carlo (REMC) method, which has already been applied very successfully to more complex protein models and other optimization problems with complex energy landscapes, in combination with the highly effective pull move neighbourhood in two widely studied Hydrophobic Polar (HP) lattice models.  相似文献   
9.
The exact mechanistic pathway of cholesterol absorption in the jejunum of the small intestines is a poorly understood process. Recently, a relatively novel gene, Niemann-Pick C1 Like 1 (NPC1L1), was identified as being critical for intestinal sterol absorption in a pathway which is sensitive to sterol absorption inhibitors such as ezetimibe. NPC1L1 is a multi-transmembrane protein, with a putative sterol sensing domain. Very little else is known about the NPC1L1 protein. In this report, we characterize the native and recombinant rat NPC1L1 protein. We show that NPC1L1 is a 145 kDa membrane protein, enriched in the brush border membrane of the intestinal enterocyte and is highly glycosylated. In addition, sequential detergent extraction of enterocytes result in highly enriched preparations of NPC1L1. An engineered Flag epitope tagged rat NPC1L1 cDNA was expressed as recombinant protein in CHO cells and demonstrated cell surface expression, similar to the native rat protein. These biochemical data indicate that NPC1L1 exists as a predominantly cell surface membrane expressed protein, consistent with its proposed role as the putative intestinal sterol transporter.  相似文献   
10.

Background  

a decline in immune and endocrine function occurs with aging. The main purpose of this study was to investigate the impact of long-term endurance training on the immune and endocrine system of elderly men. The possible interaction between these systems was also analysed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号