首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
  2023年   1篇
  2021年   1篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2012年   1篇
  2009年   1篇
  2004年   1篇
  1972年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Algal contact as a trigger for coral disease   总被引:4,自引:0,他引:4  
Diseases are causing alarming declines in reef‐building coral species, the foundation blocks of coral reefs. The emergence of these diseases has occurred simultaneously with large increases in the abundance of benthic macroalgae. Here, we show that physical contact with the macroalga Halimeda opuntia can trigger a virulent disease known as white plague type II that has caused widespread mortality in most Caribbean coral species. Colonies of the dominant coral Montastraea faveolata exposed to algal transplants developed the disease whereas unexposed colonies did not. The bacterium Aurantimonas coralicida, causative agent of the disease, was present on H. opuntia sampled close to, and away from diseased corals, indicating that the alga serves as a reservoir for this pathogen. Our results suggest that the spread of macroalgae on coral reefs could account for the elevated incidence of coral diseases over past decades and that reduction of macroalgal abundance could help control coral epizootics.  相似文献   
2.
3.
Future widespread coral bleaching and subsequent mortality has been projected using sea surface temperature (SST) data derived from global, coupled ocean–atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Ni?o Southern Oscillation (ENSO) variability. Such weaknesses most likely reduce the accuracy of predicting coral bleaching, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends, and their propagation in predictions. To analyze the relative importance of various types of model errors and biases in predicting coral bleaching, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from 24 GCMs 20th century simulations included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982–2007 to calculate accuracy using an objective measure of forecast quality, the Peirce skill score (PSS). Major findings are that: (1) predictions are most sensitive to the seasonal cycle and inter-annual variability in the ENSO 24–60 months frequency band and (2) because models tend to understate the seasonal cycle at reef locations, they systematically underestimate future bleaching. The methodology we describe can be used to improve the accuracy of bleaching predictions by characterizing the errors and uncertainties involved in the predictions.  相似文献   
4.
The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency (F v /F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.  相似文献   
5.
Over 20 species of asteroids were devastated by a sea star wasting disease (SSWD) epizootic, linked to a densovirus, from Mexico to Alaska in 2013 and 2014. For Pisaster ochraceus from the San Juan Islands, South Puget Sound and Washington outer coast, time-series monitoring showed rapid disease spread, high mortality rates in 2014, and continuing levels of wasting in the survivors in 2015. Peak prevalence of disease at 16 sites ranged to 100%, with an overall mean of 61%. Analysis of longitudinal data showed disease risk was correlated with both size and temperature and resulted in shifts in population size structure; adult populations fell to one quarter of pre-outbreak abundances. In laboratory experiments, time between development of disease signs and death was influenced by temperature in adults but not juveniles and adult mortality was 18% higher in the 19°C treatment compared to the lower temperature treatments. While larger ochre stars developed disease signs sooner than juveniles, diseased juveniles died more quickly than diseased adults. Unusual 2–3°C warm temperature anomalies were coincident with the summer 2014 mortalities. We suggest these warm waters could have increased the disease progression and mortality rates of SSWD in Washington State.  相似文献   
6.
Coral reefs and the services they provide are seriously threatened by ocean acidification and climate change impacts like coral bleaching. Here, we present updated global projections for these key threats to coral reefs based on ensembles of IPCC AR5 climate models using the new Representative Concentration Pathway (RCP) experiments. For all tropical reef locations, we project absolute and percentage changes in aragonite saturation state (Ωarag) for the period between 2006 and the onset of annual severe bleaching (thermal stress >8 degree heating weeks); a point at which it is difficult to believe reefs can persist as we know them. Severe annual bleaching is projected to start 10–15 years later at high‐latitude reefs than for reefs in low latitudes under RCP8.5. In these 10–15 years, Ωarag keeps declining and thus any benefits for high‐latitude reefs of later onset of annual bleaching may be negated by the effects of acidification. There are no long‐term refugia from the effects of both acidification and bleaching. Of all reef locations, 90% are projected to experience severe bleaching annually by 2055. Furthermore, 5% declines in calcification are projected for all reef locations by 2034 under RCP8.5, assuming a 15% decline in calcification per unit of Ωarag. Drastic emissions cuts, such as those represented by RCP6.0, result in an average year for the onset of annual severe bleaching that is ~20 years later (2062 vs. 2044). However, global emissions are tracking above the current worst‐case scenario devised by the scientific community, as has happened in previous generations of emission scenarios. The projections here for conditions on coral reefs are dire, but provide the most up‐to‐date assessment of what the changing climate and ocean acidification mean for the persistence of coral reefs.  相似文献   
7.
To forecast marine disease outbreaks as oceans warm requires new environmental surveillance tools. We describe an iterative process for developing these tools that combines research, development and deployment for suitable systems. The first step is to identify candidate host–pathogen systems. The 24 candidate systems we identified include sponges, corals, oysters, crustaceans, sea stars, fishes and sea grasses (among others). To illustrate the other steps, we present a case study of epizootic shell disease (ESD) in the American lobster. Increasing prevalence of ESD is a contributing factor to lobster fishery collapse in southern New England (SNE), raising concerns that disease prevalence will increase in the northern Gulf of Maine under climate change. The lowest maximum bottom temperature associated with ESD prevalence in SNE is 12°C. Our seasonal outlook for 2015 and long-term projections show bottom temperatures greater than or equal to 12°C may occur in this and coming years in the coastal bays of Maine. The tools presented will allow managers to target efforts to monitor the effects of ESD on fishery sustainability and will be iteratively refined. The approach and case example highlight that temperature-based surveillance tools can inform research, monitoring and management of emerging and continuing marine disease threats.  相似文献   
8.
Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business‐as‐usual CO2 emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.  相似文献   
9.
Cumulative pressures from global climate and ocean change combined with multiple regional and local‐scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio‐economic settings, we present an Adaptive Resilience‐Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press‐type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse‐type (acute) stressors (e.g. storms, bleaching events, crown‐of‐thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo‐Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on‐the‐ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services.  相似文献   
10.

Anthropogenic climate change is the biggest threat to coral reefs, but reef restoration efforts are buying time for these ecosystems. Lesion recovery, which can be a determinant of colony survival, is particularly important for restored species. Here, we evaluate lesion recovery of 18 genets of Acropora cervicornis from Florida reefs with different thermal regimes in a temperature challenge experiment. Genets demonstrated significant variability in healing, which greatly slowed under heat stress. Only 35% of fragments healed at 31.5 °C compared to 99% at 28 °C. Donor reef thermal regime significantly influenced lesion recovery under heat stress with corals from warmer reefs demonstrating greater healing than corals from cooler reefs, but did not influence recovery under ambient conditions. These findings should encourage practitioners to utilize rapidly healing genets, avoid fragmentation in high temperatures, and incorporate assisted relocation by moving corals from warmer to cooler reefs, where they might succeed under future climate conditions.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号