首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   31篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   12篇
  2013年   18篇
  2012年   7篇
  2011年   13篇
  2010年   4篇
  2009年   13篇
  2008年   9篇
  2007年   6篇
  2006年   11篇
  2005年   9篇
  2004年   12篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1971年   1篇
  1951年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
1.
A virus-neutralizing monoclonal antibody specific for glycoprotein C (gC) of herpes simplex virus type 1 strain KOS was used to select a number of neutralization-resistant mutants. A total of 103 of these mutants also were resistant to neutralization by a pool of gC-specific antibodies and thus were operationally defined as gC-. Analysis of mutant-infected cell mRNA showed that a 2.7-kilobase mRNA, comparable in size to the wild-type gC mRNA, was produced by nearly all mutants. However, six mutants, gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98, did not produce the normal-size gC mRNA but rather synthesized a novel 1.1-kilobase RNA species. These mutants had deletions of 1.6 kilobases in the coding sequence of the gC structural gene, which explains their gC- phenotype. Despite the production of an apparently normal mRNA by the remaining 97 mutants, only 7 mutants produced a detectable gC polypeptide. In contrast to wild-type gC, which is a membrane-bound glycoprotein with an apparent molecular weight of 130,000 (130K), five of these mutants quantitatively secreted proteins of lower molecular weight into the culture medium. These were synLD70 (101K), gC-8 (109K), gC-49 (112K), gC-53 (108K), and gC-85 (106K). The mutant gC-3 secreted a protein that was indistinguishable in molecular weight from wild-type KOS gC. Another mutant, gC-44, produced a gC protein which also was indistinguishable from wild-type gC by molecular weight and which remained cell associated. Pulse-labeling of infected cells in the presence and absence of the glycosylation inhibitor tunicamycin demonstrated that these proteins were glycosylated and provided estimates of the molecular weights of the nonglycosylated primary translation products. The smallest of these proteins was produced by synLD70 and was 48K, about two-thirds the size of the wild-type polypeptide precursor (73K). Physical mapping of the mutations in synLD70 and gC-8 by marker rescue placed these mutations in the middle third of the gC coding sequence. Mapping of the mutations in other gC- mutants, including two in which no protein product was detected, also placed these mutations within or very close to the gC gene. The biochemical and genetic data available on mutants secreting gC gene products suggest that secretion is due to the lack of a functional transmembrane anchor sequence on these mutant glycoproteins.  相似文献   
2.
The herpes simplex virus type 1 UL28 gene contains a 785-amino-acid open reading frame that codes for an essential protein. Studies with temperature-sensitive mutants which map to the UL28 gene indicate that the UL28 gene product (ICP18.5) is required for packaging of viral DNA and for expression of viral glycoproteins on the surface of infected cells (C. Addison, F. J. Rixon, and V. G. Preston, J. Gen. Virol. 71:2377-2384, 1990; B. A. Pancake, D. P. Aschman, and P. A. Schaffer, J. Virol. 47:568-585, 1983). In this study, we describe the isolation of two UL28 deletion mutants that were constructed and propagated in Vero cells transformed with the UL28 gene. The mutants, gCB and gC delta 7B, contained deletions of 1,881 and 537 bp, respectively, in the UL28 gene. Although the mutants synthesize viral DNA, they fail to form plaques or produce infectious virus in cells that do not express the UL28 gene. Transmission electron microscopy and Southern blot analysis demonstrated that both mutants are defective in cleavage and encapsidation of viral DNA. Analysis by cell surface immunofluorescence showed that the UL28 gene is not required for expression of viral glycoproteins on the surface of infected cells. A rabbit polyclonal antiserum was made against an Escherichia coli-expressed Cro-UL28 fusion protein. This antibody reacted with an infected-cell protein having an apparent molecular mass of 87 kDa. The 87-kDa protein was first detected at 6 h postinfection and was expressed as late as 24 h postinfection. No detectable UL28 protein was synthesized in gCB- or gC delta 7B-infected Vero cells.  相似文献   
3.
VP26 is a 12-kDa capsid protein of herpes simplex virus 1. Although VP26 is dispensable for assembly, the native capsid (a T=16 icosahedron) contains 900 copies: six on each of the 150 hexons of VP5 (149 kDa) but none on the 12 VP5 pentons at its vertices. We have investigated this interaction by expressing VP26 in Escherichia coli and studying the properties of the purified protein in solution and its binding to capsids. Circular dichroism spectroscopy reveals that the conformation of purified VP26 consists mainly of beta-sheets (approximately 80%), with a small alpha-helical component (approximately 15%). Its state of association was determined by analytical ultracentrifugation to be a reversible monomer-dimer equilibrium, with a dissociation constant of approximately 2 x 10(-5) M. Bacterially expressed VP26 binds to capsids in the normal amount, as determined by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cryoelectron microscopy shows that the protein occupies its usual sites on hexons but does not bind to pentons, even when available in 100-fold molar excess. Quasi-equivalence requires that penton VP5 must differ in conformation from hexon VP5: our data show that in mature capsids, this difference is sufficiently pronounced to abrogate its ability to bind VP26.  相似文献   
4.
5.
The turnover of [32P]orthophosphate in bovine oocyte phospholipids was studied during the early stages of spontaneous meiotic maturation, and during inhibition of this process by the cAMP phosphodiesterase inhibitor 3-isobutyl-1-methyl-xanthine (IBMX). Radioactive lipids were separated by TLC and the meiotic stage was determined cytogenetically. Ultrastructure of the nuclear membrane was examined using transmission EM. During the commitment period to meiotic resumption, which precedes germinal vesicle breakdown (GVBD), small localized convolutions appeared in the intact nuclear membrane. This was accompanied by a decrease in [32P]phosphatidic acid (PA) and an increase in [32P]-phosphatidylcholine (PC). This was followed by extensive convolutions, and subsequent dissociation, of the nuclear membrane, concomitant with a tremendous surge in [32P]PC and [32P]phosphatidylethanolamine (PE). The cAMP-mediated maintenance of meiotic arrest involved retention of entire nuclear envelope integrity and total inhibition of the surge in [32P]PC and [32P]PE which accompanied GVBD. The increase in [32P]phosphatidylinositol (PI) associated with all stages of early meiotic resumption was unaffected by IBMX. Microinjection of heparin inhibited GVBD, and injection of inositol 1,4,5-trisphosphate (IP3) overrode IBMX-maintained meiotic arrest in almost 40% of the oocytes. The results suggest that there may be several functions for phospholipid turnover in the regulation of spontaneous meiotic resumption in the bovine oocyte. The first precedes the commitment period, and involves IP3 generation to serve as the primary signal for meiotic resumption. The second occurs concomitant with the commitment period, is unaffected by the level of intracellular cAMP, and is associated with the general turnover of phospholipid. The third is associated with GVBD, and is cAMP-sensitive, and may represent stimulation of de novo synthesis of phospholipid, thereby permitting disruption of the nuclear membrane.  相似文献   
6.
WW domain binding protein 1‐like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6‐RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non‐haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4‐family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l‐deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.  相似文献   
7.
After determination of sorption isotherms of grape seeds using gravimetric method, five models with temperature effect were used to fit water sorption isotherms of grape seeds to investigate temperature effect on sorption isotherms and its thermodynamic characteristics. Halsey model had minimum mean relative percentage error (M e ) and all other models used were good in fitting experimental data (with M e of less than 10 %). Differential parameters such as net isosteric heat, isosteric heat, differential entropy and integral function such as equilibrium heat, net equilibrium heat, integral entropy and surface potential have been calculated. The net isosteric heat, isosteric heat and differential entropy decreased with moisture content. The net equilibrium enthalpy, equilibrium enthalpy and integral entropy decreased with moisture content. The surface potential at four temperatures (35, 45, 55 and 65 °C) was estimated, and low temperature effect was reported.  相似文献   
8.
9.

Background

The prognostic significance of paced QRS complex morphology on surface ECG remains unclear. This study aimed to assess long-term outcomes associated with variations in the paced QRS complex.

Methods

Adult patients who underwent dual-chamber pacemaker implantation with 20% or more ventricular pacing and a 12-lead ECG showing a paced complex were included. The paced QRS was analyzed in leads I and aVL. Long-term clinical and echocardiographic outcomes were compared at 5 years.

Results

The study included 844 patients (43.1% female; age 75.0?±?12.1). Patients with a longer paced QRS (pQRS) duration in lead I had a lower rate of atrial fibrillation (HR 0.80; p?=?0.03) and higher rate of systolic dysfunction (HR 1.17; p?<?0.001). Total pacing complex (TPC) duration was linked to higher rates of ICD implantation (HR 1.18; p?=?0.04) and systolic dysfunction (HR 1.22, p?<?0.001). Longer paced intrinsicoid deflection (pID) was associated with less atrial fibrillation (HR 0.75; p?=?0.01), more systolic dysfunction (HR 1.17; p?<?0.001), ICD implantation (HR 1.23; p?=?0.04), and CRT upgrade (HR 1.23; p?=?0.03). Exceeding thresholds for TPC, pQRS, and pID of 170, 146, and 112?ms in lead I, respectively, was associated with a substantial increase in systolic dysfunction over 5 years (p?<?0.001).

Conclusions

Longer durations of all tested parameters in lead I were associated with increased rates of left ventricular systolic dysfunction. ICD implantation and CRT upgrade were also linked to increased TPC and pID durations. Paradoxically, patients with longer pID and pQRS had less incident atrial fibrillation.  相似文献   
10.
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号