首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   16篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   3篇
  2013年   3篇
  2012年   4篇
  2011年   17篇
  2010年   8篇
  2009年   7篇
  2008年   4篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   2篇
  1993年   3篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1984年   7篇
  1983年   2篇
  1980年   1篇
  1977年   2篇
排序方式: 共有116条查询结果,搜索用时 31 毫秒
1.
Diffusion of oxygen through aqueous solutions is of great importance in biological systems. In this work, three models for the diffusion of oxygen through aqueous salt solutions are compared. One model uses mole fraction as the driving force (Fick's Law) and another uses chemical potential. The third model uses the gradient in oxygen activity as the driving force. This new model was chosen because of the availability of oxygen electrodes which directly measure oxygen activity in aqueous solution. These models have been used to reevaluate the technique of measuring O(2) diffusivities. We show that Pick's Law diffusion coefficients do not vary strongly with salt concentration as was erroneously reported in the literature. In addition, we compare the predicted O(2) fluxes of the three models over a wide range in O(2) concentrations. For oxygen concentrations of biological interest, the three models give identical predictions of the flux.  相似文献   
2.
The HCH-1 model of enzymatic cellulose hydrolysis   总被引:1,自引:0,他引:1  
Solka Floc BW200 was enzymatically hydrolyzed in a batch reactor using a commercial cellulase preparation. A total of 50 different hydrolysis conditions were run within a 10-fold range in enzyme concentration and a 30-fold range in cellulose concentration. The data were evaluated in three ways using five different models. Previous literature models were not as successful in correlating the data as the HCH-1 Model derived in this work.  相似文献   
3.
Based on the well-known mechanism describing Michaelis-Menten kinetics, three rate expressions may be developed: the exact solution (Model 1), a rate equation resulting from the pseudo-steady-state assumption (Model 2), and Model 2 with the additional assumption that the amount of free substrate is approximately equal to the total amount of substrate (Model 3). Although Model 1 is the most precise, it must be integrated numerically and it requires three experimentally determined parameters. Models 2 and 3, however, are simpler and require only two parameters. Using dimensionless forms of the three models, we have evaluated the errors in the two simplified models relative to the exact solution using a wide range of parameter values. The choice of model for reactor design depends on the initial substrate to enzyme ratio (alpha(0)), and on the ratio of the Michaelis-Menten constant to the enzyme concentration (sigma). Based on a 2% model error criteria, when alpha(0) > 15 or sigma >/= 100, Model 3 is adequate; if 5 < alpha(0) < 15, or if sigma >/= 10, then Model 2 may be used; and if alpha(0) < 5 and sigma < 10, then the exact solution (Model 1) is required.  相似文献   
4.
This paper uses countercurrent fermentation to anaerobically convert paper fines and industrial biosludge to carboxylate salts using a mixed culture of acid-forming microorganisms. Using the MixAlco process, the carboxylate salts can be thermally converted to ketones and hydrogenated into mixed alcohol fuels. Continuum particle distribution modeling (CPDM) correlated batch fermentation data to countercurrent fermentation data, allowing the prediction of product concentrations and conversions over a wide range of solid loading rates and liquid residence times. For 80% paper/20% biosludge, the predicted product concentrations agreed with the data within 7.7%. The predicted conversion agreed with the actual conversion within 27.8%. By correcting for varying selectivity, the predicted conversion agreed with the actual conversions within 15.2%. For 40% paper/60% biosludge, the predicted product concentrations agreed with the data within 9.6%. The predicted conversion agreed with the actual conversion within 28.3%. By correcting for varying selectivity, the predicted conversion agreed with the actual conversions within 15.4%. For both the 80/20 and 40/60 cases, CPDM predicts that 90% conversion is possible with a 20 g/l product concentration, 300 g/l substrate concentration, 16 day liquid residence time, and 2.5 g/(ld) solids loading rate. Before proceeding to an industrial plant, these predictions must be verified in a pilot plant.  相似文献   
5.
Simultaneous saccharification and fermentation of lime-treated biomass   总被引:4,自引:0,他引:4  
Simultaneous saccharification and fermentation (SSF) was performed on lime-treated switchgrass and corn stover, and oxidatively lime-treated poplar wood to determine their compatibility with Saccharomyces cerevisiae. Cellulose-derived glucose was extensively utilized by the yeast during SSF. The ethanol yields from pretreated switchgrass, pretreated corn stover, and pretreated-and-washed poplar wood were 72%, 62% and 73% of theoretical, respectively, whereas those from -cellulose were 67 to 91% of theoretical. The lower ethanol yields from treated biomass resulted from lower cellulose digestibilities rather than inhibitors produced by the pretreatment. Oxidative lime pretreatment of poplar wood increased the ethanol yield by a factor of 5.6, from 13% (untreated) to 73% (pretreated-and-washed).  相似文献   
6.
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. (The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution.) The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 degrees C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector. Copyright 1998 John Wiley & Sons, Inc.  相似文献   
7.

Introduction

The purpose of this study was to evaluate the effects of L-4F, an apolipoprotein A-1 mimetic peptide, alone or with pravastatin, in apoE-/-Fas-/-C57BL/6 mice that spontaneously develop immunoglobulin G (IgG) autoantibodies, glomerulonephritis, osteopenia, and atherosclerotic lesions on a normal chow diet.

Methods

Female mice, starting at eight to nine weeks of age, were treated for 27 weeks with 1) pravastatin, 2) L-4F, 3) L-4F plus pravastatin, or 4) vehicle control, followed by disease phenotype assessment.

Results

In preliminary studies, dysfunctional, proinflammatory high-density lipoproteins (piHDL) were decreased six hours after a single L-4F, but not scrambled L-4F, injection in eight- to nine-week old mice. After 35 weeks, L-4F-treated mice, in the absence/presence of pravastatin, had significantly smaller lymph nodes and glomerular tufts (PL, LP < 0.05), lower serum levels of IgG antibodies to double stranded DNA (dsDNA) (PL < 0.05) and oxidized phospholipids (oxPLs) (PL, LP < 0.005), and elevated total and vertebral bone mineral density (PL, LP < 0.01) compared to vehicle controls. Although all treatment groups presented larger aortic root lesions compared to vehicle controls, enlarged atheromas in combination treatment mice had significantly less infiltrated CD68+ macrophages (PLP < 0.01), significantly increased mean α-actin stained area (PLP < 0.05), and significantly lower levels of circulating markers for atherosclerosis progression, CCL19 (PL, LP < 0.0005) and VCAM-1 (PL < 0.0002).

Conclusions

L-4F treatment, alone or with pravastatin, significantly reduced IgG anti-dsDNA and IgG anti-oxPLs, proteinuria, glomerulonephritis, and osteopenia in a murine lupus model of accelerated atherosclerosis. Despite enlarged aortic lesions, increased smooth muscle content, decreased macrophage infiltration, and decreased pro-atherogenic chemokines in L-4F plus pravastatin treated mice suggest protective mechanisms not only on lupus-like disease, but also on potential plaque remodeling in a murine model of systemic lupus erythematosus (SLE) and accelerated atherosclerosis.  相似文献   
8.
The inhibition pattern was identified for a reaction system composed of Trichoderma reesei cellulase enzyme complex and lime-pretreated corn stover. Also, the glucose inhibition effect was quantified for the aforementioned reaction system over a range of enzyme loadings and substrate concentrations. Lastly, the range of substrate concentrations and enzyme loadings were identified in which the linear form of the simplified HCH-1 Model is valid. The HCH-1 Model is a modified Michaelis-Menton Model with non-competitive inhibition and the fraction of insoluble substrate available to bind with enzyme. With a high enzyme loading, the HCH-1 Model can be integrated and simplified in such a way that sugar conversion is linearly proportional to the logarithm of enzyme loading. A wide range of enzyme loadings (0.25-50 FPU/g dry biomass) and substrate concentrations (10-100g/L) were investigated. All experiments were conducted with an excess cellobiase loading to ensure the experimental results were not influenced by cellobiose inhibition. A non-competitive inhibition pattern was identified for the corn stover-cellulase reaction system, thereby validating the assumptions of the HCH-1 Model. At a substrate concentration of 10 g/L, glucose inhibition parameters of 0.986 and 0.979 were measured for enzyme loadings of 2 FPU/g dry biomass and 50 FPU/g dry biomass, respectively. At 5 FPU/g dry biomass, glucose inhibition parameters of 0.985 and 0.853 were measured for substrate concentrations of 10 and 100g/L, respectively. The linear form of the HCH-1 Model predicted biomass digestibility for lime-pretreated corn stover over an enzyme loading range of 0.25-50 FPU/g dry biomass and substrate concentration range of 10-100g/L.  相似文献   
9.
Internal ribosomal entry sites (IRESs) are structured cis‐acting RNAs that drive an alternative, cap‐independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo‐EM reconstructions of the ribosome 80S‐ and 40S‐bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P‐site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA‐driven translation initiation.  相似文献   
10.
Feedstock quality of switchgrass for biofuel production depends on many factors such as morphological types, geographic origins, maturity, environmental and cultivation parameters, and storage. We report variability in compositions and enzymatic digestion efficiencies for three cultivars of switchgrass (Alamo, Dacotah and Shawnee), grown and harvested at different locations and seasons. Saccharification yields of switchgrass processed by different pretreatment technologies (AFEX, dilute sulfuric acid, liquid hot water, lime, and soaking in aqueous ammonia) are compared in regards to switchgrass genotypes and harvest seasons. Despite its higher cellulose content per dry mass, Dacotah switchgrass harvested after wintering consistently gave a lower saccharification yield than the other two varieties harvested in the fall. The recalcitrance of upland cultivars and over-wintered switchgrass may require more severe pretreatment conditions. We discuss the key features of different pretreatment technologies and differences in switchgrass cultivars and harvest seasons on hydrolysis performance for the applied pretreatment methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号