首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
  国内免费   1篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   5篇
  1986年   3篇
  1984年   3篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1976年   1篇
  1972年   3篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1967年   3篇
  1966年   1篇
  1962年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
1.
Rats were fasted or fasted and refed simple purified diets so the effects of individual carbohydrates or fats could be studied. Freshly isolated hepatocytes from these animals were used to measure both apoE synthesis and mRNA levels so any changes in apoE synthesis that might occur without changes in its mRNA could be detected. Some of these experiments were done with both sexes. Both fasting and fasting and refeeding a 60% glucose fat-free diet significantly increased spoE synthesis. However, cyclic AMP is not likely to rapidly mediate the effect of fasting since dibutyryl cAMP slightly lowered (rather than increased) apoE synthesis and mRNA when injected into rats for 4.5 h. Dietary fat had no effect either in the absence of carbohydrate or when consumption of carbohydrate was constant in pair-fed rats. ApoE mRNA levels remained normal for 4 days in primary hepatocytes cultured in medium that had only amino acids as an energy source. Added hormones or fructose had no significant effect. Thus, only fasting and fasting and refeeding glucose were able to significantly change apoE synthesis or mRNA levels. Synthesis of apoE may be regulated to increase when apoE is secreted with very low density lipoprotein or when apoE in secreted high density lipoprotein is needed to acquire cholesteryl esters for the synthesis of bile salts and acids by liver.  相似文献   
2.
本文报道海拔3417m和4280m地区世居藏族和移居汉族青少年运动状态下心肺功能的对比研究。结果显示:3417m和4280m世居藏族的最大氧耗量、无氧阈值及最大心输出量都明显大于汉族,血氧饱和度(Sao2)随运动负荷的增加而降低。海拔3417m藏、汉族的△Sao2分别为7.46%和10.03%,4280m处为8.57%和13.75%,最大心率随海拔升高而下降。研究提示,藏族青少年有较高的最大有氧能力,反映了他们对低氧环境的适应优势。  相似文献   
3.
Radical-pair decay kinetics and molecular triplet quantum yields at various magnetic fields are reported for quinone-depleted reaction centers from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26. The radical-pair decay is observed by picosecond absorption spectroscopy to be a single exponential to within the experimental uncertainty at all fields. The decay time increases from 13 ns at zero field to 17 ns at 1 kG, and decreases to 9 ns at 50 kG. The orientation averaged quantum yield of formation of the molecular triplet of the primary electron donor, 3P, drops to 47% of its zero-field value at 1 kG and rises to 126% at 50 kG. Combined analysis of these data gives a singlet radical-pair decay rate constant of 5 · 107s?1, a lower limit for the triplet radical-pair decay rate constant of 1 · 108s?1 and a lower limit for the quantum yield of radical-pair decay by the triplet channel of 38% at zero field. The upper limit of the quantum yield of 3P formation at zero field is measured to be 32%. In order to explain this apparent discrepancy, decay of the radical pair by the triplet channel must lead to some rapid ground state formation as well as some 3P formation. It is proposed that the triplet radical pair decays to a triplet charge-transfer state which is strongly coupled to the ground state by spin-orbit interactions. Several possibilities for this charge-transfer state are discussed.  相似文献   
4.
Rat liver glucose-6-phosphate dehydrogenase (G6PD) is one of several proteins involved in lipid metabolism whose synthesis is regulated by diet. In experiments reported here, rats were fasted or fed diets until a new steady state level of G6PD was produced. Livers were used to measure G6PD activity, synthesis and mRNA simultaneously. Since accurate quantitation of G6PD mRNA by Northern blots was found to be difficult in noninduced animals a new solution hybridization assay was also used. Noninduced rats have approx. One molecule of G6PD mRNA per liver cell. Changes in G6PD mRNA are larger than previously reported and, at the steady state, can completely account for the 33-fold change in G6PD activity and synthesis when fasted rats are refed a high carbohydrate diet. In contrast, a high fat carbohydrate-free diet does not increase G6PD mRNA and dibutyryl cAMP lowers G6PD mRNA. Since changes in G6PD synthesis and activity are closely correlated, degradation of G6PD is not significantly regulated.  相似文献   
5.
The distribution of the multiple molecular forms of rat liver and mammary gland glucose-6-phosphate dehydrogenase was determined by electrophoresis on 5% polyacrylamide gels. In both of these organs, changes in the distribution of enzyme activity among the several forms was slight even when approximately 20- to 40-fold changes in enzyme specific activity were achieved by fasting-refeeding experiments (for liver) or during pregnancy and lactation (for mammary gland). It was concluded that the induction of glucose-6-phosphate dehydrogenase in these two organs occurs without any major redistribution among the multiple molecular forms of this enzyme.  相似文献   
6.
Picosecond and nanosecond spectroscopic techniques have been used to study the primary electron transfer processes in reaction centers isolated from the photosynthetic bacterium Rhodopseudomonas viridis. Following flash excitation, the first excited singlet state (P1) of the bacteriochlorophyll complex (P) transfers an electron to an intermediate acceptor (I) in less than 20 ps. The radical pair state (P+I?) subsequently transfers an electron to another acceptor (X) in about 230 ps. There is an additional step of unknown significance exhibiting 35 ps kinetics. P+ subsequently extracts an electron from a cytochrome, with a time constant of about 270 ns. At low redox potential (X reduced before the flash), the state P+I? (or PF) lives approx. 15 ns. It decays, in part, into a longer lived state (PR), which appears to be a triplet state. State PR decays with an exponential time of approx. 55 μs. After continuous illumination at low redox potential (I and X both reduced), excitation with an 8-ps flash produces absorption changes reflecting the formation of the first excited singlet state, P1. Most of P1 then decays with a time constant of 20 ps. The spectra of the absorbance changes associated with the conversion of P to P1 or P+ support the view that P involves two or more interacting bacteriochlorophylls. The absorbance changes associated with the reduction of I to I? suggest that I is a bacteriopheophytin interacting strongly with one or more bacteriochlorophylls in the reaction center.  相似文献   
7.
Abstract. The holarctic ant tribe Formicini is revised, the new genus Bajcaridris described, and possible phylogenetic relationships are discussed. The subgenus Iberoformica is synonymized with Formica. A synopsis, diagnosis and keys to the genera are provided.  相似文献   
8.
9.
Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional asymmetry of the two cofactor branches.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号