首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   4篇
  2016年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   7篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   2篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   12篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   7篇
  1975年   3篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1967年   2篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
1.
This study was done to evaluate the effect of insulin on sugar transport into skeletal muscle after exercise. The permeability of rat epitrochlearis muscle to 3-O-methylglucose (3-MG) was measured after exposure to a range of insulin concentrations 30, 60, and 180 min after a bout of exercise. Thirty and 60 min after exercise, the effects of exercise and insulin on 3-MG transport were additive over a wide range of insulin concentrations, with no increase in sensitivity or responsiveness to insulin. After 180 min, when approximately 66% of the exercise-induced increase in sugar transport had worn off, both the responsiveness and sensitivity of the glucose transport process to insulin were increased. These findings appear compatible with the hypothesis that the actions of exercise and insulin result in activation and/or translocation into the plasma membrane of two separate pools of glucose transporters in mammalian skeletal muscle.  相似文献   
2.
Stimulation of glucose transport in skeletal muscle by hypoxia   总被引:5,自引:0,他引:5  
Hypoxia caused a progressive cytochalasin B-inhibitable increase in the rate of 3-O-methylglucose transport in rat epitrochlearis muscles to a level approximately six-fold above basal. Muscle ATP concentration was well maintained during hypoxia, and increased glucose transport activity was still present after 15 min of reoxygenation despite repletion of phosphocreatine. However, the increase in glucose transport activity completely reversed during a 180-min-long recovery in oxygenated medium. In perfused rat hindlimb muscles, hypoxia caused an increase in glucose transporters in the plasma membrane, suggesting that glucose transporter translocation plays a role in the stimulation of glucose transport by hypoxia. The maximal effects of hypoxia and insulin on glucose transport activity were additive, whereas the effects of exercise and hypoxia were not, providing evidence suggesting that hypoxia and exercise stimulate glucose transport by the same mechanism. Caffeine, at a concentration too low to cause muscle contraction or an increase in glucose transport by itself, markedly potentiated the effect of a submaximal hypoxic stimulus on sugar transport. Dantrolene significantly inhibited the hypoxia-induced increase in 3-O-methylglucose transport. These effects of caffeine and dantrolene suggest that Ca2+ plays a role in the stimulation of glucose transport by hypoxia.  相似文献   
3.
4.
5.
6.
The effects of exogenous oleate on glucose uptake, lactate production and glycogen concentration in resting and contracting skeletal muscle were studied in the perfused rat hindquarter. In preliminary studies with aged erythrocytes at a haemoglobin concentration of 8g/100ml in the perfusion medium, 1.8mm-oleate had no effect on glucose uptake or lactate production. During these studies it became evident that O(2) delivery was inadequate with aged erythrocytes. Perfusion with rejuvenated human erythrocytes at a haemoglobin concentration of 12g/100ml resulted in a 2-fold higher O(2) uptake at rest and a 4-fold higher O(2) uptake during muscle contraction than was obtained with aged erythrocytes. Rejuvenated erythrocytes were therefore used in subsequent experiments. Glucose uptake and lactate production by the well-oxygenated hindquarter were inhibited by one-third, both at rest and during muscle contraction, when 1.8mm-oleate was added to the perfusion medium. Addition of oleate also significantly protected against glycogen depletion in the fast-twitch red and slow-twitch red types of muscle, but not in white muscle, during sciatic-nerve stimulation. In the absence of added oleate, glucose was confined to the extracellular space in resting muscle. Addition of oleate resulted in intracellular glucose accumulation in red muscle. Contractile activity resulted in accumulation of intracellular glucose in all three muscle types, and this effect was significantly augmented in the red types of muscle by perfusion with oleate. The concentrations of citrate and glucose 6-phosphate were also increased in red muscle perfused with oleate. We conclude that, as in the heart, availability of fatty acids has an inhibitory effect on glucose uptake and glycogen utilization in well-oxygenated red skeletal muscle.  相似文献   
7.
8.
Euglycemic-hyperinsulinemic clamps were performed on six healthy untrained individuals to determine whether exercise that induces muscle damage also results in insulin resistance. Clamps were performed 48 h after bouts of predominantly 1) eccentric exercise [30 min, downhill running, -17% grade, 60 +/- 2% maximal O2 consumption (VO2max)], 2) concentric exercise (30 min, cycle ergometry, 60 +/- 2% VO2max), or 3) without prior exercise. During the clamps, euglycemia was maintained at 90 mg/dl while insulin was infused at 30 mU.m-2.min-1 for 120 min. Hepatic glucose output (HGO) was determined using [6,6-2H]glucose. Eccentric exercise caused marked muscle soreness and significantly elevated creatine kinase levels (273 +/- 73, 92 +/- 27, 87 +/- 25 IU/l for the eccentric, concentric, and control conditions, respectively) 48 h after exercise. Insulin-mediated glucose disposal rate was significantly impaired (P less than 0.05) during the clamp performed after eccentric exercise (3.47 +/- 0.51 mg.kg-1.min-1) compared with the clamps performed after concentric exercise (5.55 +/- 0.94 mg.kg-1.min-1) or control conditions (5.48 +/- 1.0 mg.kg-1.min-1). HGO was not significantly different among conditions (0.77 +/- 0.26, 0.65 +/- 0.27, and 0.66 +/- 0.64 mg.kg-1.min-1 for the eccentric, concentric, and control clamps, respectively). The insulin resistance observed after eccentric exercise could not be attributed to altered plasma cortisol, glucagon, or catecholamine concentrations. Likewise, no differences were observed in serum free fatty acids, glycerol, lactate, beta-hydroxybutyrate, or alanine. These results show that exercise that results in muscle damage, as reflected in muscle soreness and enzyme leakage, is followed by a period of insulin resistance.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号