首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   2篇
  2021年   1篇
  2015年   1篇
  2010年   2篇
  2009年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1967年   2篇
  1966年   1篇
  1941年   1篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
The high intraluminal concentrations of HCO(3)(-) in the human pancreatic ducts have suggested the existence of a membrane protein supplying the Cl(-)/HCO(3)(-) exchanger. Membrane-bound carbonic anhydrase IV (CA IV) is one of the potential candidates for this protein. The difficulties in isolating human pancreatic ducts have led the authors to study the molecular mechanisms of HCO(3)(-) secretion in cancerous cell lines. In this work, we have characterized the CA IV expressed in Capan-1 cells. A 35-kDa CA IV was detected in cell homogenates and purified plasma membranes. Treatment of purified plasma membranes with phosphatidylinositol-phospholipase-C indicated that this CA IV was not anchored by a glycosylphosphatidylinositol (GPI). In contrast, its detection on purified plasma membranes by an antibody specifically directed against the carboxyl terminus of human immature GPI-anchored CA IV indicated that it was anchored by a C-terminal hydrophobic segment. Immunoelectron microscopy and double-labeling immunofluorescence revealed that this CA IV was present on apical plasma membranes, and in the rough endoplasmic reticulum, the endoplasmic reticulum-Golgi intermediate compartment, the Golgi complex, and secretory granules, suggesting its transport via the classical biosynthesis/secretory pathway. The expression in Capan-1 cells of a 35-kDa CA IV anchored in the apical plasma membrane through a hydrophobic segment, as is the case in the healthy human pancreas, should make the study of its role in pancreatic HCO(3)(-) secretion easier.  相似文献   
2.
Inositol 1,4,5-trisphosphate 5-phosphatase catalyses the dephosphorylation of the phosphate in the 5-position from inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. One particulate and two soluble enzymes were previously described in bovine brain. In this study, we have obtained a precipitating antiserum against soluble type I inositol 1,4,5-trisphosphate 5-phosphatase. The particulate, but not the soluble type II enzyme, was immunoprecipitated by the serum. Inositol 1,4,5-triphosphate 5-phosphatase activity from crude extracts of rat brain, human platelets and rat liver were immmunoprecipitated by the same antibodies, suggesting the existence of common antigenic determinant among inositol 1,4,5-trisphosphate 5-phosphatases of diverse sources.  相似文献   
3.
4.
Chronic alcohol consumption is associated with increased risk of gastrointestinal cancer. High concentrations of ethanol trigger mucosal hyperregeneration, disrupt cell adhesion, and increase the sensitivity to carcinogens. Most of these effects are thought to be mediated by acetaldehyde, a genotoxic metabolite produced from ethanol by alcohol dehydrogenases. Here, we studied the role of low ethanol concentrations, more likely to mimic those found in the intestine in vivo, and used intestinal cells lacking alcohol dehydrogenase to identify the acetaldehyde-independent biological effects of ethanol. Under these conditions, ethanol did not stimulate the proliferation of nonconfluent cells, but significantly increased maximal cell density. Incorporation of phosphatidylethanol, produced from ethanol by phospholipase D, was instrumental to this effect. Phosphatidylethanol accumulation induced claudin-1 endocytosis and disrupted the claudin-1/ZO-1 association. The resulting nuclear translocation of ZONAB was shown to mediate the cell density increase in ethanol-treated cells. In vivo, incorporation of phosphatidylethanol and nuclear translocation of ZONAB correlated with increased proliferation in the colonic epithelium of ethanol-fed mice and in adenomas of chronic alcoholics. Our results show that phosphatidylethanol accumulation after chronic ethanol exposure disrupts signals that normally restrict proliferation in highly confluent intestinal cells, thus facilitating abnormal intestinal cell proliferation.  相似文献   
5.
Evidence is accumulating that gastrin precursors may act as growth factors for the colonic mucosa in vivo. The aims of this study were to prepare recombinant human progastrin(6-80) and to investigate its structure and biological activities in vitro. Human progastrin(6-80) was expressed in Escherichia coli as a glutathione S-transferase fusion protein. After thrombin cleavage progastrin(6-80) was purified by reverse phase high pressure liquid chromatography and characterized by radioimmunoassay, amino acid sequencing, and mass spectrometry. Assays for metal ions by atomic emission spectroscopy revealed the presence of a single tightly bound calcium ion. Progastrin(6-80) at concentrations in the pm to nm range stimulated proliferation of the conditionally transformed mouse colon cell line YAMC. The observations that progastrin(6-80) did not bind to either the cholecystokinin (CCK)-A or the gastrin/CCK-B receptor expressed in COS cells and that antagonists selective for either receptor did not reverse the proliferative effects of progastrin(6-80) suggested that progastrin(6-80) stimulated proliferation independently of either the CCK-A or the gastrin/CCK-B receptor. We conclude that recombinant human progastrin(6-80) is biologically active and contains a single calcium ion. With the exception of the well known zinc-dependent polymerization of insulin and proinsulin, this is the first report of selective, high affinity binding of metal ions to a prohormone.  相似文献   
6.
The various molecular forms of gastrin can act as promoters of proliferation and differentiation in different regions of the gastrointestinal tract. We report a novel stimulatory effect of glycine-extended gastrin(17) only on cell/cell dissociation and cell migration in a non-tumorigenic mouse gastric epithelial cell line (IMGE-5). In contrast, both amidated and glycine-extended gastrin(17) stimulated proliferation of IMGE-5 cells via distinct receptors. Glycine-extended gastrin(17)-induced dissociation preceded migration and was blocked by selective inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) but did not require mitogen-activated protein (MAP) kinase activation. Furthermore, glycine-extended gastrin(17) induced a PI3-kinase-mediated tyrosine phosphorylation of the adherens junction protein beta-catenin, partial dissociation of the complex between beta-catenin and the transmembrane protein E-cadherin, and delocalization of beta-catenin into the cytoplasm. Long lasting activation of MAP kinases by glycine-extended gastrin(17) was specifically required for the migratory response, in contrast to the involvement of a rapid and transient MAP kinase activation in the proliferative response to both amidated and glycine-extended gastrin(17). Therefore, the time course of MAP kinase activation appears to be a critical determinant of the biological effects mediated by this pathway. Together with the involvement of PI3-kinase in the dissociation of adherens junctions, long term activation of MAP kinases seems responsible for the selectivity of this novel effect of G(17)-Gly on the adhesion and migration of gastric epithelial cells.  相似文献   
7.
The regulation of intercellular adhesion by hepatocyte growth factor (HGF) was examined on a novel nontumorigenic gastric epithelial cell line (IMGE-5) derived from H-2Kb-tsA58 transgenic mice. IMGE-5 cells constitutively expressed cytokeratin 18 and HGF receptors. Under permissive conditions (33 degrees C + interferon-gamma), IMGE-5 cells proliferated rapidly but did not display membrane expression of adherens and tight junction proteins. Under nonpermissive conditions, their proliferation was decreased and they displayed a strong, localized membrane expression of E-cadherin/beta-catenin and occludin/ZO-1. HGF treatment largely prevented the targeting of ZO-1 to the tight junction and induced a significant decrease of the transepithelial resistance measured across a confluent IMGE-5 cell monolayer. HGF rapidly increased the tyrosine phosphorylation of ZO-1 and decreased its association with occludin in a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent manner. PI 3-kinase was also involved in HGF-induced migration of IMGE-5 cells. Our results demonstrate that 1) HGF prevents the appearance of ZO-1 in the membrane during epithelial cell differentiation; 2) HGF causes partial relocalization of ZO-1 to the cytoplasm and nucleus and concomitantly stimulates cell dissociation and migration; and 3) IMGE-5 cells offer a useful model for the study of gastric epithelial cell differentiation.  相似文献   
8.
9.
Human pancreatic cells of the Capan-1 line form domes in culture during the stationary growth stage. The domes are thought to be a result of the transport of water and electrolytes by the Capan-1 cells. In older Capan-1 cultures, the epithelial sheets formed thickenings from several layers of cells of which the outermost ones were joined by tight type junctions. In the intracellular space, deposits of insoluble calcium salts were observed. Culture of Capan-1 cells in the presence of fibroblasts prolonged survival of the cultures with intact domes for more than 80 days. The Capan-1 cells proliferated forming multilayers and closed cavities which we called super-domes. X-ray spectrometry and electron diffraction analysis showed that the abundant deposits inside these cavities consisted of calcium phosphate in an apatite structure. The number of these deposits increased with time in culture, and they appeared to be formed at the sites of contact with an extracellular matrix consisting of cell debris. Deposits were not observed within the culture medium. Cells from domes were stained cytochemically for ATPases and alkaline phosphatases and examined by light and electron microscopy. The Capan-1 cells surrounding the domes were differentiated, polarized cells containing placental type alkaline phosphatases on their apical membranes and Ca2(+)-ATPases on their basolateral membranes. These enzymes were thought to play a role in the accumulation of phosphate and Ca2+ ions in the dome cavities, which then formed crystals in the presence of organic compounds produced by lysis of cells of the deepest layers of the super-domes. The crystals of hydroxyapatite observed in standard Capan-1 cell cultures and those cocultured with fibroblasts were assumed to be a result of transepithelial transport of Ca2+ and phosphate ions by these cells.  相似文献   
10.
It has been shown that adult pancreatic ductal cells can dedifferentiate and act as pancreatic progenitors. Dedifferentiation of epithelial cells is often associated with the epithelial–mesenchymal transition (EMT). In this study, we investigated the occurrence of EMT in adult human exocrine pancreatic cells both in vitro and in vivo. Cells of exocrine fraction isolated from the pancreas of brain-dead donors were first cultured in suspension for eight days. This led to the formation of spheroids, composed of a principal population of cells with duct-like phenotype. When cultivated in tissue culture-treated flasks, spheroid cells exhibited a proliferative capacity and coexpressed epithelial (cytokeratin7 and cytokeratin19) and mesenchymal (vimentin and α-smooth muscle actin) markers as well as marker of progenitor pancreatic cells (pancreatic duodenal homeobox factor-1) and surface markers of mesenchymal stem cells. The switch from E-cadherin to N-cadherin associated with Snail1 expression suggested that these cells underwent EMT. In addition, we showed coexpression of epithelial and mesenchymal markers in ductal cells of one normal adult pancreas and three type 2 diabetic pancreases. Some of the vimentin-positive cells were found to coexpress glucagon or amylase. These results point to the occurrence of EMT, which may take place on dedifferentiation of ductal cells during the regeneration or renewal of human pancreatic tissues. (J Histochem Cytochem 58:807–823, 2010)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号