首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   4篇
  2024年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2014年   5篇
  2013年   9篇
  2012年   11篇
  2011年   4篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   4篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有90条查询结果,搜索用时 531 毫秒
1.
Altitudinal gradients offer valuable study systems to investigate how adaptive genetic diversity is distributed within and between natural populations and which factors promote or prevent adaptive differentiation. The environmental clines along altitudinal gradients tend to be steep relative to the dispersal distance of many organisms, providing an opportunity to study the joint effects of divergent natural selection and gene flow. Temperature is one variable showing consistent altitudinal changes, and altitudinal gradients can therefore provide spatial surrogates for some of the changes anticipated under climate change. Here, we investigate the extent and patterns of adaptive divergence in animal populations along altitudinal gradients by surveying the literature for (i) studies on phenotypic variation assessed under common garden or reciprocal transplant designs and (ii) studies looking for signatures of divergent selection at the molecular level. Phenotypic data show that significant between‐population differences are common and taxonomically widespread, involving traits such as mass, wing size, tolerance to thermal extremes and melanization. Several lines of evidence suggest that some of the observed differences are adaptively relevant, but rigorous tests of local adaptation or the link between specific phenotypes and fitness are sorely lacking. Evidence for a role of altitudinal adaptation also exists for a number of candidate genes, most prominently haemoglobin, and for anonymous molecular markers. Novel genomic approaches may provide valuable tools for studying adaptive diversity, also in species that are not amenable to experimentation.  相似文献   
2.
Natural genetic variation is essential for the adaptation of organisms to their local environment and to changing environmental conditions. Here, we examine genomewide patterns of nucleotide variation in natural populations of the outcrossing herb Arabidopsis halleri and associations with climatic variation among populations in the Alps. Using a pooled population sequencing (Pool‐Seq) approach, we discovered more than two million SNPs in five natural populations and identified highly differentiated genomic regions and SNPs using FST‐based analyses. We tested only the most strongly differentiated SNPs for associations with a nonredundant set of environmental factors using partial Mantel tests to identify topo‐climatic factors that may underlie the observed footprints of selection. Possible functions of genes showing signatures of selection were identified by Gene Ontology analysis. We found 175 genes to be highly associated with one or more of the five tested topo‐climatic factors. Of these, 23.4% had unknown functions. Genetic variation in four candidate genes was strongly associated with site water balance and solar radiation, and functional annotations were congruent with these environmental factors. Our results provide a genomewide perspective on the distribution of adaptive genetic variation in natural plant populations from a highly diverse and heterogeneous alpine environment.  相似文献   
3.
Neutral genetic structure of natural populations is primarily influenced by migration (the movement of individuals and, subsequently, their genes) and drift (the statistical chance of losing genetic diversity over time). Migration between populations is influenced by several factors, including individual behavior, physical barriers, and environmental heterogeneity among populations. However, drift is expected to be stronger in populations with low immigration rate and small effective population size. With the technological advancement in geological information systems and spatial analysis tools, landscape genetics now allows the development of realistic migration models and increased insight to important processes influencing diversity of natural populations. In this study, we investigated the relationship between landscape connectivity and genetic distance of threespine stickleback (Gasterosteus aculeatus) inhabiting a pond complex in Belgjarskógur, Northeast Iceland. We used two landscape genetic approaches (i.e., least-cost-path and isolation-by-resistance) and asked whether gene flow, as measured by genetic distance, was more strongly associated with Euclidean distance (isolation-by-distance) or with landscape connectivity provided by areas prone to flooding (as indicated by Carex sp. cover)? We found substantial genetic structure across the study area, with pairwise genetic distances among populations (DPS) ranging from 0.118 to 0.488. Genetic distances among populations were more strongly correlated with least-cost-path and isolation-by-resistance than with Euclidean distance, whereas the relative contribution of isolation-by-resistance and Euclidian distance could not be disentangled. These results indicate that migration among stickleback populations occurs via periodically flooded areas. Overall, this study highlights the importance of transient landscape elements influencing migration and genetic structure of populations at small spatial scales.  相似文献   
4.
Conservation genetics is a well‐established scientific field. However, limited information transfer between science and practice continues to hamper successful implementation of scientific knowledge in conservation practice and management. To mitigate this challenge, we have established a conservation genetics community, which entails an international exchange‐and‐skills platform related to genetic methods and approaches in conservation management. First, it allows for scientific exchange between researchers during annual conferences. Second, personal contact between conservation professionals and scientists is fostered by organising workshops and by popularising knowledge on conservation genetics methods and approaches in professional journals in national languages. Third, basic information on conservation genetics has been made accessible by publishing an easy‐to‐read handbook on conservation genetics for practitioners. Fourth, joint projects enabled practitioners and scientists to work closely together from the start of a project in order to establish a tight link between applied questions and scientific background. Fifth, standardised workflows simplifying the implementation of genetic tools in conservation management have been developed. By establishing common language and trust between scientists and practitioners, all these measures help conservation genetics to play a more prominent role in future conservation planning and management.  相似文献   
5.
Polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLPs) and sequence analysis of noncoding regions of chloroplast DNA were used to investigate 37 populations of Eritrichium nanum covering its total distribution area, the European Alps. There was no haplotypic variation within the populations, and most haplotypes were restricted to single sites or to neighbouring populations, suggesting low levels of long distance gene flow via seeds. The present geographical distribution of haplotypes probably reflects an ancient geographical pattern within two regions in the intensely glaciated western and eastern central Alps identified as genetic hotspot areas. These two regions contained seven of the total of 11 haplotypes, including many of the most derived ones. The divergent haplotypes formed closely related groups, which supported a separate evolution of these haplotypes in these two regions and, more importantly, gave strong evidence for the in situ survival of these populations on nunataks within the western and eastern central Alps during Pleistocene glaciation. This result is in concordance with a previous study on E. nanum using nuclear markers. Only one haplotype was common and widespread throughout the distributional range of E. nanum. At the same time, it was the evolutionarily basal-most and all other haplotypes were best described as its descendants. This haplotype is hypothesized to be genetically identical to a Tertiary Alpine colonizing ancestor, whose distribution was secondarily fragmented and infiltrated by derived haplotypes originating through local mutations.  相似文献   
6.
Several alpine species have outlying populations in the lowlands and lower mountains north of the Alps. These small, isolated populations are usually described as either (1) glacial relics, (2) descendants from populations living on forelands and moraines during the ice ages, or (3) populations founded by long-distance dispersal after glaciation. A floristic survey of the historic and present distributions and an allozyme investigation were performed on one of these relic species, Saxifraga aizoides. The species was historically more abundant and had more stations in more regions of northeastern Switzerland. The former population structures within regions, nowadays destroyed, were still reflected in distinct and high regional genetic diversity and variation. There was weak evidence of increased inbreeding in outlying populations, but populations did not deviate from Hardy-Weinberg equilibrium. No geographic pattern of genetic variation above the regional scale (>10 km) was found. Based on the spatial and genetic structures found, it was not possible to discriminate between the abovementioned hypotheses. Nevertheless, the study shows how a thorough evaluation of distribution and abundance data aids the interpretation of genetic data with respect to population history, biogeography, and conservation biology.  相似文献   
7.
Debates on speciation processes in pteridophytes have revived. In order to study the evolutionary origin of an apomictic fern species, we investigated the genetic variation in the strictly agamosporous Dryopteris remota. We determined the genotypes of 22 individuals from many different locations within the species' European distribution and of 20 individuals from a Swiss population. A previous study on isozyme variation showed no intraspecific genetic variation in a similar sample set (Schneller and Holderegger, 1994, American Fern Journal 84: 94-98). In contrast to this, four out of 12 random amplified polymorphic DNA (RAPD) primers tested revealed low genetic diversity among individuals of D. remota from different locations. Intrapopulational genetic variation was also very low, but in the single population studied, a unique multiband genotype could be detected. The geographic distribution of genetic variation found in D. remota was best explained by the assumption of a single origin, the accumulation of somatic mutations during spread, and occasional, but effective, events of dispersal over large distances. The present study thus stresses the importance of long-distance dispersal in evolutionary processes and biogeography of ferns.  相似文献   
8.
BACKGROUND AND AIMS: The taxon complex comprising Quercus petraea and Q. robur shows distinct morphologies and ecological preferences, but mostly low differentiation in various types of molecular markers at a broad spatial range. Local, spatially explicit analyses may reveal patterns induced by microevolutionary processes operating mainly over short distances. However, no attempts have been made to date to explore the potential of spatial analyses combining morphological and genetic data of these oaks. METHODS: A mixed oak stand was studied to elucidate the small-scale population genetic structure. All adult individuals were classified and putative hybrids were identified using multivariate discrimination analysis of leaf morphological characters. Likewise, all trees were genotyped with five nuclear microsatellites, and a Bayesian assignment method was applied based on maximum likelihood of multilocus genotypes for taxon and putative hybrid classification. KEY RESULTS: Multivariate analyses of leaf morphological data recognized two groups with few individuals as putative hybrids. These groups were significantly differentiated at the five microsatellites, and genetic taxon assignment coincided well with morphological classification. Furthermore, most putative hybrids were assigned to the taxon found in their spatial neighbourhood. When grouping trees into clusters according to their spatial positions, these clusters were clearly dominated by one taxon. Discontinuities in morphological and genetic distance matrices among these clusters showed high congruence. CONCLUSIONS: The spatial-genetic analyses and the available literature led to the assumption that reproductive barriers, assortative mating, limited seed dispersal and microsite-induced selection in favour of the locally adapted taxon at the juvenile stage may reinforce taxon-specific spatial aggregation that fosters species separation. Thus, the results tend to support the hypothesis that Q. petraea and Q. robur are distinct taxa which share a recent common ancestry. Occasional hybrids are rarely found in adults owing to selection during establishment of juveniles.  相似文献   
9.
Many mountain ranges have been strongly glaciated during the Quaternary ice ages, and the locations of glacial refugia of mountain plants have been debated for a long time. A series of detailed molecular studies, investigating intraspecific genetic variation of mountain plants in the European Alps, now allows for a first synopsis. A comparison of the phylogeographic patterns with geological and palaeoenvironmental data demonstrates that glacial refugia were located along the southwestern, southern, eastern and northern border of the Alps. Additional glacial refugia were present in central Alpine areas, where high-elevation plants survived the last glaciation on ice-free mountain tops. The observed intraspecific phylogeographies suggest general patterns of glacial survival, which conform to well-known centres of Alpine species diversity and endemism. This implies that evolutionary or biogeographic processes induced by climatic fluctuations act on gene and species diversity in a similar way.  相似文献   
10.
A geostatistical perspective on spatial genetic structure may explain methodological issues of quantifying spatial genetic structure and suggest new approaches to addressing them. We use a variogram approach to (i) derive a spatial partitioning of molecular variance, gene diversity, and genotypic diversity for microsatellite data under the infinite allele model (IAM) and the stepwise mutation model (SMM), (ii) develop a weighting of sampling units to reflect ploidy levels or multiple sampling of genets, and (iii) show how variograms summarize the spatial genetic structure within a population under isolation-by-distance. The methods are illustrated with data from a population of the epiphytic lichen Lobaria pulmonaria, using six microsatellite markers. Variogram-based analysis not only avoids bias due to the underestimation of population variance in the presence of spatial autocorrelation, but also provides estimates of population genetic diversity and the degree and extent of spatial genetic structure accounting for autocorrelation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号