首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   9篇
  2021年   1篇
  2018年   1篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   4篇
  2008年   3篇
  2007年   6篇
  2006年   5篇
  2004年   7篇
  2003年   7篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   10篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1973年   2篇
  1970年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
1.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
2.
Esterase 6 (Est-6/EST6) is polymorphic in both Drosophila melanogaster and D. simulans for two common allozyme forms, as well as for several other less common variants. Parallel latitudinal clines in the frequencies of the common EST6-F and EST6-S allozymes in these species have previously been interpreted in terms of a shared amino acid polymorphism that distinguishes the two variants and is subject to selection. Here we compare the sequences of four D. simulans Est-6 isolates and show that overall estimates of nucleotide heterozygosity in both coding and 5' flanking regions are more than threefold higher than those obtained previously for this gene in D. melanogaster. Nevertheless, the ratio of replacement to exon silent-site polymorphism in D. simulans is less than the ratio of replacement to silent divergence between D. simulans and D. melanogaster, which could be the result of increased efficiency of selection against replacement polymorphisms in D. simulans or to divergent selection between the two species. We also find that the amino acid polymorphisms separating EST6- F and EST6-S in D. simulans are not the same as those that separate these allozymes in D. melanogaster, implying that the shared clines do not reflect shared molecular targets for selection. All comparisons within and between the two species reveal a remarkable paucity of variation in a stretch of nearly 400 bp immediately 5' of the gene, indicative of strong selective constraint to retain essential aspects of Est-6 promoter function.   相似文献   
3.
With the world-wide increase of patients with renal failure, the development of functional renal replacement therapies have gained significant interest and novel technologies are rapidly evolving. Currently used renal replacement therapies insufficiently remove accumulating waste products, resulting in the uremic syndrome. A more preferred treatment option is kidney transplantation, but the shortage of donor organs and the increasing number of patients waiting for a transplant warrant the development of novel technologies. The bioartificial kidney (BAK) is such promising biotechnological approach to replace essential renal functions together with the active secretion of waste products. The development of the BAK requires a multidisciplinary approach and evolves at the intersection of regenerative medicine and renal replacement therapy. Here we provide a concise review embracing a compact historical overview of bioartificial kidney development and highlighting the current state-of-the-art, including implementation of living-membranes and the relevance of extracellular matrices. We focus further on the choice of relevant renal epithelial cell lines versus the use of stem cells and co-cultures that need to be implemented in a suitable device. Moreover, the future of the BAK in regenerative nephrology is discussed.  相似文献   
4.
During chronic kidney disease (CKD), drug metabolism is affected leading to changes in drug disposition. Furthermore, there is a progressive accumulation of uremic retention solutes due to impaired renal clearance. Here, we investigated whether uremic toxins can influence the metabolic functionality of human conditionally immortalized renal proximal tubule epithelial cells (ciPTEC) with the focus on UDP-glucuronosyltransferases (UGTs) and mitochondrial activity. Our results showed that ciPTEC express a wide variety of metabolic enzymes, including UGTs. These enzymes were functionally active as demonstrated by the glucuronidation of 7-hydroxycoumarin (7-OHC; Km of 12 ± 2 μM and a Vmax of 76 ± 3 pmol/min/mg) and p-cresol (Km of 33 ± 13 μM and a Vmax of 266 ± 25 pmol/min/mg). Furthermore, a wide variety of uremic toxins, including indole-3-acetic acid, indoxyl sulfate, phenylacetic acid and kynurenic acid, reduced 7-OHC glucuronidation with more than 30% as compared with controls (p < 0.05), whereas UGT1A and UGT2B protein expressions remained unaltered. In addition, our results showed that several uremic toxins inhibited mitochondrial succinate dehydrogenase (i.e. complex II) activity with more than 20% as compared with controls (p < 0.05). Moreover, indole-3-acetic acid decreased the reserve capacity of the electron transport system with 18% (p < 0.03). In conclusion, this study shows that multiple uremic toxins inhibit UGT activity and mitochondrial activity in ciPTEC, thereby affecting the metabolic capacity of the kidney during CKD. This may have a significant impact on drug and uremic retention solute disposition in CKD patients.  相似文献   
5.
6.
Calcium (Ca2+) is vital for multiple processes in the body, and maintenance of the electrolyte concentration is required for everyday physiological function. In the kidney, and more specifically, in the late distal convoluted tubule and connecting tubule, the fine-tuning of Ca2+ reabsorption from the pro-urine takes place. Here, Ca2+ enters the epithelial cell via the transient receptor potential vanilloid receptor type 5 (TRPV5) channel, diffuses to the basolateral side bound to calbindin-D28k and is extruded to the blood compartment via the Na+/Ca2+ exchanger 1 (NCX1) and the plasma membrane Ca2+ ATPase (PMCA). Traditionally, PMCA1 was considered to be the primary Ca2+ pump in this process. However, in recent studies TRPV5-expressing tubules were shown to highly express PMCA4. Therefore, PMCA4 may have a predominant role in renal Ca2+ handling. This study aimed to elucidate the role of PMCA4 in Ca2+ homeostasis by characterizing the Ca2+ balance, and renal and duodenal Ca2+-related gene expression in PMCA4 knockout mice. The daily water intake of PMCA4 knockout mice was significantly lower compared to wild type littermates. There was no significant difference in serum Ca2+ level or urinary Ca2+ excretion between groups. In addition, renal and duodenal mRNA expression levels of Ca2+-related genes, including TRPV5, TRPV6, calbindin-D28k, calbindin-D9k, NCX1 and PMCA1 were similar in wild type and knockout mice. Serum FGF23 levels were significantly increased in PMCA4 knockout mice. In conclusion, PMCA4 has no discernible role in normal renal Ca2+ handling as no urinary Ca2+ wasting was observed. Further investigation of the exact role of PMCA4 in the distal convoluted tubule and connecting tubule is required.  相似文献   
7.
The molecular assembly of the epithelial Ca(2+) channels (TRPV5 and TRPV6) was investigated to determine the subunit stoichiometry and composition. Immunoblot analysis of Xenopus laevis oocytes expressing TRPV5 and TRPV6 revealed two specific bands of 75 and 85-100 kDa, corresponding to the core and glycosylated proteins, respectively, for each channel. Subsequently, membranes of these oocytes were sedimented on sucrose gradients. Immuno blotting revealed that TRPV5 and TRPV6 complexes migrate with a mol. wt of 400 kDa, in line with a tetrameric structure. The tetrameric stoichiometry was confirmed in an electrophysiological analysis of HEK293 cells co-expressing concatemeric channels together with a TRPV5 pore mutant that reduced Cd(2+) sensitivity and voltage-dependent gating. Immuno precipitations using membrane fractions from oocytes co-expressing TRPV5 and TRPV6 demonstrated that both channels can form heteromeric complexes. Expression of all possible heterotetrameric TRPV5/6 complexes in HEK293 cells resulted in Ca(2+) channels that varied with respect to Ca(2+)-dependent inactivation, Ba(2+) selectivity and pharmacological block. Thus, Ca(2+)-transporting epithelia co-expressing TRPV5 and TRPV6 can generate a pleiotropic set of functional heterotetrameric channels with different Ca(2+) transport kinetics.  相似文献   
8.
Acharya  S; Rayborn  ME; Hollyfield  JG 《Glycobiology》1998,8(10):997-1006
Rod and cone photoreceptors project from the outer retinal surface into a carbohydrate-rich interphotoreceptor matrix (IPM). Unique IPM glycoconjugates are distributed around rods and cones. Wheat germ agglutinin (WGA) strongly decorates the rod matrix domains and weakly decorates the cone matrix domains. This study characterizes the major WGA-binding glycoprotein in the human IPM, which we refer to as SPACR (sialoprotein associated with cones and rods). SPACR, which has a molecular weight of 147 kDa, was isolated and purified from the IPM by lectin affinity chromatography. A polyclonal antibody to SPACR was prepared that colocalizes in tissue preparations with WGA-binding domains in the IPM. Sequential digestion of SPACR with N- and O- glycosidases results in a systematic increase in electrophorectic mobility, indicating the presence of both N- and O-linked glycoconjugates. Complete deglycosylation results in a reduction in the relative molecular mass of SPACR by about 30%. Analysis of lectin binding allowed us to identify some of the structural characteristics of SPACR glycoconjugates. Treatment with neuraminidase exposes Galbeta1- 3GalNAc disaccharide as indicated by positive peanut agglutinin (PNA) staining, accompanied by the loss of WGA staining. Maackia amurensis agglutinins (MAA-1 and MAA-2), specific for sialic acid in alpha2-3 linkage to Gal, bind SPACR, while Sambucus nigra agglutinin (SNA), specific for alpha2-6 linked sialic acid, does not, indicating that the dominant glycoconjugate determinant on SPACR is the O-linked carbohydrate, NeuAcalpha2-3Galbeta1-3GalNAc. The abundance of sialic acid in SPACR suggests that this glycoprotein may contribute substantially to the polyanionic nature of the IPM. The carbohydrate chains present on SPACR could also provide sites for extensive crosslinking and participate in the formation of the ordered IPM lattice that surrounds the elongate photoreceptors projecting from the outer retinal surface.   相似文献   
9.
The recent structure determinations of the mammalian effector enzyme adenylyl cyclase reveal the structure of its catalytic core, provide new insights into its catalytic mechanism and suggest how diverse signaling molecules regulate its activity.  相似文献   
10.
The extracellular Ca2+-sensing receptor (CaR) is a key-player in plasma Ca2+ homeostasis. It is essentially expressed in the parathyroid glands and along the kidney nephron. The distal convoluted tubules (DCT) and connecting tubules (CNT) in the kidney are involved in active Ca2+ reabsorption, but the function of the CaR has remained unclear in these segments. Here, the Ca2+-selective Transient Receptor Potential Vanilloid-subtype 5 channel (TRPV5) determines active Ca2+ reabsorption by forming the apical entry gate. In this study we show that the CaR and TRPV5 co-localize at the luminal membrane of DCT/CNT. Furthermore, by patch-clamp and Fura-2-ratiometric measurements we demonstrate that activation of the CaR leads to elevated TRPV5-mediated currents and increases intracellular Ca2+ concentrations in cells co-expressing TRPV5 and CaR. Activation of CaR initiated a signaling cascade that activated phorbol-12-myristate-13-acetate (PMA)-insensitive protein kinase C (PKC) isoforms. Importantly, mutation of two putative PKC phosphorylation sites, S299 and S654, in TRPV5 prevented the stimulatory effect of CaR activation on channel activity, as did a dominant negative CaR construct, CaRR185Q. Interestingly, the activity of TRPV6, TRPV5′ closest homologue, was not affected by the activated CaR. We conclude that activation of the CaR stimulates TRPV5-mediated Ca2+ influx via a PMA-insensitive PKC isoform pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号