首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   5篇
  123篇
  2022年   2篇
  2021年   3篇
  2018年   1篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   8篇
  2011年   11篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   8篇
  2006年   9篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1978年   1篇
  1976年   2篇
排序方式: 共有123条查询结果,搜索用时 0 毫秒
1.
Starting from FAUC 365, a series of iodine substituted heteroaryl carboxamides has been synthesized revealing high affinity and selectivity for the dopamine D3 receptor. Binding data showed a 15-560-fold selectivity for the dopamine D3 over D2. A 2,3-dichloro substitution pattern on the phenylpiperazine moiety led to the highest subtype selectivity, whereas the 2-methoxy substituted compounds showed superior D3 affinity. Suitable precursors were radioiodinated with high radiochemical yields (53-85%) leading to potential imaging agents for the D3 receptor by SPET.  相似文献   
2.
Studying protease/peptide inhibitor interactions is a useful tool for understanding molecular recognition in general and is particularly relevant for the rational design of inhibitors with therapeutic potential. An inhibitory peptide (PMTLEYR) derived from the third domain of turkey ovomucoid inhibitor and optimized for specific porcine pancreatic elastase inhibition was introduced into an inhibitor scaffold to increase the proteolytic stability of the peptide. The trypsin-specific squash inhibitor EETI II from Ecballium elaterium was chosen as the scaffold. The resulting hybrid inhibitor HEI-TOE I (hybrid inhibitor from E. elaterium and the optimized binding loop of the third domain of turkey ovomucoid inhibitor) shows a specificity and affinity to porcine pancreatic elastase similar to the free inhibitory peptide but with significantly higher proteolytic stability. Isothermal titration calorimetry revealed that elastase binding of HEI-TOE I occurs with a small unfavorable positive enthalpy contribution, a large favorable positive entropy change, and a large negative heat capacity change. In addition, the inhibitory peptide and the hybrid inhibitor HEI-TOE I protected endothelial cells against degradation following treatment with porcine pancreatic elastase.  相似文献   
3.
The urokinase-type plasminogen activation system, including the serine protease uPA (urokinase-type plasminogen activator) and its cell surface receptor (uPAR, CD87), are important key molecules in tumor invasion and metastasis. Besides its proteolytic function, binding of uPA to uPAR on tumor cells exerts various cell responses such as migration, adhesion, proliferation, and differentiation. Hence, the uPA/uPAR system is a potential target for tumor therapy. We have designed a new generation of uPA-derived synthetic cyclic peptides suited to interfere with the binding of uPA to uPAR and present a new technology involving micro silica particles coated with uPA (SP-uPA) and reacting with recombinant soluble uPAR (suPAR), to rapidly assess the antagonistic potential of uPA-peptides by flow cytofluorometry (FACS). For this, we used silica particles of 10 microm in diameter to which HMW-uPA is coupled using the EDC/NHS method. Soluble, recombinant suPAR was added and the interaction of SP-uPA with suPAR verified by reaction with monoclonal antibody HD13.1 directed to uPAR, followed by a cyan dye (cy5)-labeled antibody directed against mouse IgG. Thereby it was possible to test naturally occurring ligands of uPAR (HMW-uPA, ATF) as well as highly effective, synthetic cyclic uPA-derived peptides (cyclo21,29[D-Cys21Cys29]-UPA21-30, cyclo21,29[D-Cys21Nle28Cys29]-uPA21-30, cyclo21,29[D-Cys(21)2-Nal24Cys29]-uPA21-30, and cyclo21,29[D-Cys21Orn23Thi24Thi25Cys29]-uPA21-30. The results obtained with the noncellular SP-uPA/uPAR system are highly comparable to those obtained with a cellular system involving FITC-uPA and the promyeloid cell line U937 as the source of uPAR.  相似文献   
4.
5.
Members of the Rab family of small GTPases play important roles in membrane trafficking along the exocytic and endocytic pathways. The Rab11 subfamily consists of two highly conserved members, Rab11a and Rab11b. Rab11a has been localized both to the pericentriolar recycling endosome and to the trans-Golgi network and functions in recycling of transferrin. However, the localization and function of Rab11b are completely unknown. In this study green fluorescent protein (GFP)-tagged Rab11b was used to determine its subcellular localization. GFP-Rab11b colocalized with internalized transferrin, and using different mutants of Rab11b, the role of this protein in transferrin uptake and recycling was examined. Two of these mutants, Rab11b-Q/L (constitutively active) and Rab11b-S/N (constitutively inactive), strongly inhibited the recycling of transferrin. Interestingly, both of them had no effect on transferrin uptake. In contrast, the C-terminally altered mutant Rab11b-DeltaC, which cannot be prenylated and therefore cannot interact with membranes, did not interfere with wild-type Rab11b function. From these data we concluded that functional Rab11b is essential for the transport of internalized transferrin from the recycling compartment to the plasma membrane.  相似文献   
6.
We previously established a role for HSP27 as a predictive marker for therapeutic response towards gemcitabine in pancreatic cancer. Here, we investigate the underlying mechanisms of HSP27‐mediated gemcitabine sensitivity. Utilizing a pancreatic cancer cell model with stable HSP27 overexpression, cell cycle arrest and apoptosis induction were analysed by flow cytometry, nuclear staining, immunoblotting and mitochondrial staining. Drug sensitivity studies were performed by proliferation assays. Hyperthermia was simulated using mild heat shock at 41.8°C. Upon gemcitabine treatment, HSP27‐overexpressing cells displayed an early S‐phase arrest subsequently followed by a strongly increased sub‐G1 fraction. Apoptosis was characterized by PARP‐, CASPASE 3‐, CASPASE 8‐, CASPASE 9‐ and BIM‐ activation along with a mitochondrial membrane potential loss. It was reversible through chemical caspase inhibition. Importantly, gemcitabine sensitivity and PARP cleavage were also elicited by heat shock‐induced HSP27 overexpression, although to a smaller extent, in a panel of pancreatic cancer cell lines. Finally, HSP27‐overexpressing pancreatic cancer cells displayed an increased sensitivity also towards death receptor‐targeting agents, suggesting another pro‐apoptotic role of HSP27 along the extrinsic apoptosis pathway. Taken together, in contrast to the well‐established anti‐apoptotic properties of HSP27 in cancer, our study reveals novel pro‐apoptotic functions of HSP27—mediated through both the intrinsic and the extrinsic apoptotic pathways—at least in pancreatic cancer cells. HSP27 could represent a predictive marker of therapeutic response towards specific drug classes in pancreatic cancer and provides a novel molecular rationale for current clinical trials applying the combination of gemcitabine with regional hyperthermia in pancreatic cancer patients.  相似文献   
7.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
8.
QTL detection experiments in livestock species commonly use the half-sib design. Each male is mated to a number of females, each female producing a limited number of progeny. Analysis consists of attempting to detect associations between phenotype and genotype measured on the progeny. When family sizes are limiting experimenters may wish to incorporate as much information as possible into a single analysis. However, combining information across sires is problematic because of incomplete linkage disequilibrium between the markers and the QTL in the population. This study describes formulæ for obtaining MLEs via the expectation maximization (EM) algorithm for use in a multiple-trait, multiple-family analysis. A model specifying a QTL with only two alleles, and a common within sire error variance is assumed. Compared to single-family analyses, power can be improved up to fourfold with multi-family analyses. The accuracy and precision of QTL location estimates are also substantially improved. With small family sizes, the multi-family, multi-trait analyses reduce substantially, but not totally remove, biases in QTL effect estimates. In situations where multiple QTL alleles are segregating the multi-family analysis will average out the effects of the different QTL alleles.  相似文献   
9.
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.  相似文献   
10.

Introduction  

There is growing evidence that interleukin 17 (IL-17) producing T cells are involved in the pathogenesis of systemic lupus erythematosus (SLE). Previous studies showed that increased percentages of T-cell subsets expressing the costimulatory molecules CD80 and CD134 are associated with disease activity and renal involvement in SLE. The aim of this study was to investigate the distribution and phenotypical characteristics of IL-17 producing T-cells in SLE, in particular in patients with lupus nephritis, with emphasis on the expression of CD80 and CD134.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号