首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   28篇
  2021年   3篇
  2019年   2篇
  2017年   2篇
  2016年   4篇
  2015年   8篇
  2014年   11篇
  2013年   9篇
  2012年   12篇
  2011年   8篇
  2010年   10篇
  2009年   3篇
  2008年   7篇
  2007年   14篇
  2006年   16篇
  2005年   8篇
  2004年   19篇
  2003年   6篇
  2002年   9篇
  2001年   6篇
  2000年   8篇
  1999年   14篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   5篇
  1988年   7篇
  1987年   7篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   1篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1973年   4篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   6篇
  1968年   1篇
  1967年   3篇
  1964年   1篇
排序方式: 共有285条查询结果,搜索用时 46 毫秒
1.
In the present work, a method based on an epitope-tagged ubiquitin derivative is described that allows for the unambiguous detection of ubiquitin-protein conjugates formed in vivo or in vitro. Expression in the yeast Saccharomyces cerevisiae of ubiquitin that has been tagged at its amino terminus with a peptide epitope results in the formation of tagged ubiquitin-protein conjugates that are detectable by immunoblotting with a monoclonal antibody that recognizes the tag. The expression of tagged ubiquitin has no adverse effect on vegetative growth and, moreover, can suppress the stress-hypersensitive phenotype of yeast lacking the polyubiquitin gene UBI4. We also show that tagged ubiquitin is correctly conjugated in vivo and in vitro to a short-lived test protein and can be covalently extended into the multimeric ubiquitin chain that is normally required for the degradation of this protein. Surprisingly, however, conjugation of tagged ubiquitin inhibits proteolysis. These and related results suggest that the amino-terminal region of ubiquitin is important in protease-substrate recognition and that the multiubiquitin chain is a dynamic transient structure. The potential of tagged ubiquitin for the identification and isolation of ubiquitin-protein conjugates and ubiquitin-related enzymes, and as a tool in mechanistic studies is discussed.  相似文献   
2.
The N-terminal amino-acid sequence of human ITI has been found to be identical with that of the acid-stable human 30-kDa inhibitors (HI-30) from urine, serum, and those released from inter-alpha-trypsin inhibitor by trypsin or chymotrypsin. Serum HI-30 and HI-30 released by trypsin differ from the urinary inhibitor by an additional C-terminal arginine residue. Compared to these two inhibitors the inhibitor released by chymotryptic proteolysis is elongated C-terminally by an additional phenylalanine residue. These results strongly favour HI-30 as the N-terminus of the inter-alpha-trypsin inhibitor and its release from this inhibitor in vivo by cleavage of the Arg123-Phe124 peptide bond by trypsin-like proteinases.  相似文献   
3.
Two crude fractions of acid-resistant trypsin inhibitors (apparent molecular masses 44 and 20 kDa, respectively) were prepared from human urine by gel permeation chromatography. From both preparations the pure inhibitors were isolated by high performance liquid chromatography (HPLC). Their N-terminal amino-acid sequences were determined and compared with those of HI-30 and HI-14 as isolated by reversible binding to either immobilized trypsin or immobilized chymotrypsin. The N-terminal amino-acid sequence of the high-molecular mass inhibitor UI-I isolated by HPLC was identical with those of HI-30 and UI-C-I isolated via immobilized trypsin or chymotrypsin, respectively. The low-molecular mass inhibitors UI-II and UI-C-II differ from HI-14 by the N-terminal extension Glu-Val-Thr-Lys-when obtained by HPLC or by the extension Thr-Lys-when obtained via immobilized chymotrypsin, respectively. The comparison of these N-termini with the amino-acid sequence of HI-30 (Ala1-...-Val16-Thr-Glu-Val-Thr-Lys-HI-14) defines the low molecular urinary trypsin inhibitors as proteolytic degradation products of the high-molecular urinary inhibitor. Proteolysis may occur at different bonds. The existing discrepancies in molecular architecture and in molecular masses of the urinary trypsin inhibitors are discussed.  相似文献   
4.
Inter-alpha-trypsin inhibitor is a human serum protease inhibitor of Mr 180 000 which may release physiological derivatives. A complex between IgG and an inter-alpha-trypsin inhibitor derivative of Mr 30 000 has been recently detected in human serum and was found to be inactive against trypsin, in contrast with the known inhibitory activity of the free 30-kDa derivative. The present study deals with detailed characterization of an inter-alpha-trypsin inhibitor-IgG complex following its purification by affinity chromatography techniques (anti-inter-alpha-trypsin inhibitor immunoadsorbent and Protein A-Sepharose) in mild conditions. The resulting product reacted simultaneously with anti-IgG and anti-inter-alpha-trypsin inhibitor antibodies. This complex contained Mr 180 000 inhibitor at least to some extent. It migrated in the beta-gamma zone in agarose; its molecular weight was estimated to be 1 500 000 or more; part of it displayed covalent bonding between inter-alpha-trypsin inhibitor and IgG; it had a trypsin inhibitor activity. Immunoelectrophoresis allowed one to demonstrate the native complex in serum owing to the use of anti-inter-alpha-trypsin inhibitor and anti-gamma radioactively labelled antibodies. The double immunoreactivity thus evidenced proved to be heterogeneous with respect to its level and location in the native as well as in the purified complex.  相似文献   
5.
Two soluble cAMP-dependent protein kinases were purified from the cytoplasm of Paramecium tetraurelia. Both kinases consisted of a 40-kDa catalytic subunit and a 44-kDa regulatory subunit. The two forms of the enzyme were separated by anion-exchange chromatography. Affinity chromatography on cAMP-Sepharose separated the regulatory subunit (retained by the column) from the cAMP-independent catalytic subunit (not retained). Four classes of monoclonal antibodies were generated. One class was specific for the catalytic subunit of both cAMP-dependent protein kinases, and three classes recognized the regulatory subunit of both forms of the enzyme. Subunits of 40 and 44 kDa were detected on immunoblots of purified cilia and of crude cell extracts. In addition, one class of antibodies specific for the regulatory subunit detected a ciliary protein with a molecular mass of 48 kDa. The monoclonal antibodies did not recognize type I or type II cAMP-dependent protein kinase from rabbit muscle nor did they cross-react with proteins from several unicellular eucaryotes, with one exception: antibodies specific for the catalytic subunit recognized a 40-kDa protein of Tetrahymena pyriformis.  相似文献   
6.
The photoinduced reaction cycle of bacteriorhodopsin (BR) has been studied by means of a recently developed picosecond infrared spectroscopic method at ambient temperature. BR - K difference spectra between 1560 and 1700 cm-1 have been recorded at delay times from 100 ps to 14 ns. The spectrum remains unchanged during this period. The negative difference OD band at 1660 cm-1 indicates the peptide backbone responds within 50 ps. A survey in the region of carboxylic side chain absorption around 1740 cm-1 reveals that perturbations of those groups, present in low-temperature FTIR spectra, are not observable within 10 ns, suggesting a slow conformational change.  相似文献   
7.
SWISS-2DPAGE is a database of proteins identified on two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The current release contains 343 entries of human, yeast (Saccharomyces cerevisiae) and Escherichia coli origin, as well as virtual entries for each of the protein sequences in the SWISS-PROT database.  相似文献   
8.
Two regions of the genome, a 1-kbp portion of the zeste locus and a 1.1- kbp portion of the yolk protein 2 locus, were sequenced in six individuals from each of four species: Drosophila melanogaster, D. simulans, D. mauritiana, and D. sechellia. The species and strains were the same as those of a previous study of a 1.9-kbp region of the period locus. No evidence was found for recent balancing or directional selection or for the accumulation of selected differences between species. Yolk protein 2 has a high level of amino acid replacement variation and a low level of synonymous variation, while zeste has the opposite pattern. This contrast is consistent with information on gene function and patterns of codon bias. Polymorphism levels are consistent with a ranking of effective population sizes, from low to high, in the following order: D. sechellia, D. melanogaster, D.mauritiana, and D. simulans. The apparent species relationships are very similar to those suggested by the period locus study. In particular, D. simulans appears to be a large population that is still segregating variation that arose before the separation of D. mauritiana and D. sechellia. It is estimated that the separation of ancestral D. melanogaster from the other species occurred 2.5-3.4 Mya. The separations of D. sechellia and D. mauritiana from ancestral D. simulans appear to have occurred 0.58- 0.86 Mya, with D. mauritiana having diverged from ancestral D. simulans 0.1 Myr more recently than D. sechellia.   相似文献   
9.
10.
The primary structure of the broad specificity proteinase inhibitor from dog submandibular glands was elucidated. The inhibitor consists of a single polypeptide chain of 117 amino acids which is folded into two domains (heads) connected by a peptide of three amino acid residues. Both domains I and II show a clear structural homology to each other as well as to the single-headed pancreatic secretory trypsin inhibitors (Kazal type). The trypsin reactive site (-Cys-Pro-Arg-Leu-His-Glx-Pro-Ile-Cys-) is located in domain I and the chymotrypsin reactive center (-Cys-Thr-Met-Asp-Tyr-Asx-Arg-Pro-Leu-Tyr-Cys-) in domain II, cf. the Figure. The inhibitor is thus double-headed with two independent reactive sites. Whereas head I is responsible for the inhibition of trypsin and plasmin, head II is responsible for the inhibition of chymotrypsin, subtilisin, elastase and probably also Aspergillus oryzae protease and pronase. Remarkably, the structural homology exists also to the single-headed acrosin-trypsin inhibitors from seminal plasma[12] and the Japanese quail inhibitor composed of three domains[13].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号