首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   3篇
  104篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2016年   2篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   9篇
  2010年   10篇
  2009年   5篇
  2008年   7篇
  2007年   3篇
  2006年   9篇
  2005年   3篇
  2004年   9篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1995年   1篇
  1983年   1篇
  1971年   1篇
  1969年   1篇
  1964年   1篇
  1958年   1篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
1.

Background

Deterioration of executive functions in the elderly has been associated with impairments in walking performance. This may be caused by limited cognitive flexibility and working memory, but could also be caused by altered prioritization of simultaneously performed tasks. To disentangle these options we investigated the associations between Trail Making Test performance—which specifically measures cognitive flexibility and working memory—and dual task costs, a measure of prioritization.

Methodology and Principal Findings

Out of the TREND study (Tuebinger evaluation of Risk factors for Early detection of Neurodegenerative Disorders), 686 neurodegeneratively healthy, non-demented elderly aged 50 to 80 years were classified according to their Trail Making Test performance (delta TMT; TMT-B minus TMT-A). The subjects performed 20 m walks with habitual and maximum speed. Dual tasking performance was tested with walking at maximum speed, in combination with checking boxes on a clipboard, and subtracting serial 7 s at maximum speeds. As expected, the poor TMT group performed worse when subtracting serial 7 s under single and dual task conditions, and they walked more slowly when simultaneously subtracting serial 7 s, compared to the good TMT performers. In the walking when subtracting serial 7 s condition but not in the other 3 conditions, dual task costs were higher in the poor TMT performers (median 20%; range −6 to 58%) compared to the good performers (17%; −16 to 43%; p<0.001). To the contrary, the proportion of the poor TMT performance group that made calculation errors under the dual tasking situation was lower than under the single task situation, but higher in the good TMT performance group (poor performers, −1.6%; good performers, +3%; p = 0.035).

Conclusion

Under most challenging conditions, the elderly with poor TMT performance prioritize the cognitive task at the expense of walking velocity. This indicates that poor cognitive flexibility and working memory are directly associated with altered prioritization.  相似文献   
2.
3.
Animal genomes contain hundreds of microRNAs (miRNAs), small regulatory RNAs that control gene expression by binding to complementary sites in target mRNAs. Some rules that govern miRNA/target interaction have been elucidated but their general applicability awaits further experimentation on a case-by-case basis. We use here an assay system in transgenic nematodes to analyze the interaction of the Caenorhabditis elegans lsy-6 miRNA with 3' UTR sequences. In contrast to many previously described assay systems used to analyze miRNA/target interactions, our assay system operates within the cellular context in which lsy-6 normally functions, a single neuron in the nervous system of C. elegans. Through extensive mutational analysis, we define features in the known and experimentally validated target of lsy-6, the 3' UTR of the cog-1 homeobox gene, that are required for a functional miRNA/target interaction. We describe that both in the context of the cog-1 3' UTR and in the context of heterologous 3' UTRs, one or more seed matches are not a reliable predictor for a functional miRNA/target interaction. We rather find that two nonsequence specific contextual features beyond miRNA target sites are critical determinants of miRNA-mediated 3' UTR regulation. The contextual features reside 3' of lsy-6 binding sites in the 3' UTR and act in a combinatorial manner; mutation of each results in limited defects in 3' UTR regulation, but a combinatorial deletion results in complete loss of 3' UTR regulation. Together with two lsy-6 sites, these two contextual features are capable of imparting regulation on a heterologous 3' UTR. Moreover, the contextual features need to be present in a specific configuration relative to miRNA binding sites and could either represent protein binding sites or provide an appropriate structural context. We conclude that a given target site resides in a 3' UTR context that evolved beyond target site complementarity to support regulation by a specific miRNA. The large number of 3' UTRs that we analyzed in this study will also be useful to computational biologists in designing the next generation of miRNA/target prediction algorithms.  相似文献   
4.
    

Background

Whole-genome sequencing represents a promising approach to pinpoint chemically induced mutations in genetic model organisms, thereby short-cutting time-consuming genetic mapping efforts.

Principal Findings

We compare here the ability of two leading high-throughput platforms for paired-end deep sequencing, SOLiD (ABI) and Genome Analyzer (Illumina; “Solexa”), to achieve the goal of mutant detection. As a test case we used a mutant C. elegans strain that harbors a mutation in the lsy-12 locus which we compare to the reference wild-type genome sequence. We analyzed the accuracy, sensitivity, and depth-coverage characteristics of the two platforms. Both platforms were able to identify the mutation that causes the phenotype of the mutant C. elegans strain, lsy-12. Based on a 4 MB genomic region in which individual variants were validated by Sanger sequencing, we observe tradeoffs between rates of false positives and false negatives when using both platforms under similar coverage and mapping criteria.

Significance

In conclusion, whole-genome sequencing conducted by either platform is a viable approach for the identification of single-nucleotide variations in the C. elegans genome.  相似文献   
5.
6.
Bülow HE  Hobert O 《Neuron》2004,41(5):723-736
Heparan sulfate proteoglycans (HSPG) are components of the extracellular matrix through which axons navigate to reach their targets. The heparan sulfate (HS) side chains of HSPGs show complex and differentially regulated patterns of secondary modifications, including sulfations of distinct hydroxyl groups and epimerization of an asymmetric carbon atom. These modifications endow the HSPG-containing extracellular matrix with the potential to code for an enormous molecular diversity. Attempting to decode this diversity, we analyzed C. elegans animals lacking three HS-modifying enzymes, glucuronyl C5-epimerase, heparan 6O-sulfotransferase, and 2O-sulfotransferase. Each of the mutant animals exhibit distinct as well as overlapping axonal and cellular guidance defects in specific neuron classes. We have linked individual HS modifications to two specific guidance systems, the sax-3/Robo and kal-1/Anosmin-1 systems, whose activity is dependent on different HS modifications in different cellular contexts. Our results demonstrate that the molecular diversity in HS encodes information that is crucial for different aspects of neuronal development.  相似文献   
7.
8.
Identification of the molecular lesion in Caenorhabditis elegans mutants isolated through forward genetic screens usually involves time-consuming genetic mapping. We used Illumina deep sequencing technology to sequence a complete, mutant C. elegans genome and thus pinpointed a single-nucleotide mutation in the genome that affects a neuronal cell fate decision. This constitutes a proof-of-principle for using whole-genome sequencing to analyze C. elegans mutants.  相似文献   
9.
10.
IntroductionThe instrumented-Timed-Up-and-Go test (iTUG) provides detailed information about the following movement patterns: sit-to-walk (siwa), straight walking, turning and walk-to-sit (wasi). We were interested in the relative contributions of respective iTUG sub-phases to specific clinical deficits most relevant for daily life in Parkinson’s disease (PD). More specifically, we investigated which condition–fast speed (FS) or convenient speed (CS)–differentiates best between mild- to moderate-stage PD patients and controls, which parameters of the iTUG sub-phases are significantly different between PD patients and controls, and how the iTUG parameters associate with cognitive parameters (with particular focus on cognitive flexibility and working memory) and Health-Related-Quality of Life (HRQoL).MethodsTwenty-eight PD participants (65.1±7.1 years, H&Y stage 1–3, medication OFF state) and 20 controls (66.1±7.5 years) performed an iTUG (DynaPort®, McRoberts BV, The Netherlands) under CS and FS conditions. The PD Questionnaire 39 (PDQ-39) was employed to assess HRQoL. General cognitive and executive functions were assessed using the Montreal Cognitive Assessment and the Trail Making Test.ResultsThe total iTUG duration and sub-phases durations under FS condition differentiated PD patients slightly better from controls, compared to the CS condition. The following sub-phases were responsible for the observed longer total duration PD patients needed to perform the iTUG: siwa, turn and wasi. None of the iTUG parameters correlated relevantly with general cognitive function. Turning duration and wasi maximum flexion velocity correlated strongest with executive function. Walking back duration correlated strongest with HRQoL.DiscussionThis study confirms that mild- to moderate-stage PD patients need more time to perform the iTUG than controls, and adds the following aspects to current literature: FS may be more powerful than CS to delineate subtle movement deficits in mild- to moderate-stage PD patients; correlation levels of intra-individual siwa and wasi parameters may be interesting surrogate markers for the level of automaticity of performed movements; and sub-phases and kinematic parameters of the iTUG may have the potential to reflect executive functioning and HRQoL aspects of PD patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号