首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4005篇
  免费   156篇
  国内免费   2篇
  4163篇
  2022年   24篇
  2021年   33篇
  2020年   20篇
  2019年   36篇
  2018年   49篇
  2017年   32篇
  2016年   51篇
  2015年   114篇
  2014年   138篇
  2013年   257篇
  2012年   258篇
  2011年   235篇
  2010年   150篇
  2009年   135篇
  2008年   259篇
  2007年   255篇
  2006年   239篇
  2005年   270篇
  2004年   236篇
  2003年   256篇
  2002年   278篇
  2001年   51篇
  2000年   45篇
  1999年   49篇
  1998年   77篇
  1997年   48篇
  1996年   45篇
  1995年   46篇
  1994年   31篇
  1993年   30篇
  1992年   34篇
  1991年   44篇
  1990年   29篇
  1989年   18篇
  1988年   15篇
  1987年   20篇
  1986年   15篇
  1985年   20篇
  1984年   22篇
  1983年   21篇
  1982年   25篇
  1981年   29篇
  1980年   18篇
  1979年   19篇
  1978年   13篇
  1977年   7篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1972年   5篇
排序方式: 共有4163条查询结果,搜索用时 0 毫秒
1.
Defense mechanisms againstSporothrix schenckii were studied using mouse models. After an intracutaneous injection of the yeast form ofS. schenckii to the dorsal skin of the congenitally athymic nude and normal heterozygote littermate mice, nodules were formed. They regressed and disappeared in 10 weeks in the case of normal mice. On the other hand, nodules and then ulceration developed progressively in nude mice until all animals expired by dissemination of microorganisms at the 11th week of inoculation. Histopathologically the migrated cells were similar in both the normal and the nude mice, particularly during the early phase (within 24 h), with infiltration by PMNs being predominant. Fragmentation ofS. schenckii commenced early during the 12–24 h stage of inoculation in the normal mice, while such fragmentation was scarce in nude mice even though numerous PMNs accumulated. Microscopic observations in the early stages (within 24 h of inoculation) suggested that the lack of killing activity by PMNs in nude mice contributes more to the impaired defense than the lack of macrophage activation by T-cells.  相似文献   
2.
3.
4.
5.
The objective of this study was to purify and characterize a mouse hepatic enzyme that directly generates CH3SeH from seleno-l-methionine (l-SeMet) by the α,γ-elimination reaction. The l-SeMet α,γ-elimination enzyme was ubiquitous in tissues from ICR mice and the activity was relatively high in the large intestine, brain, and muscle, as well as the liver. Aging and sex of the mice did not have any significant influence on the activity in the liver. The enzyme was purified from the mouse liver by ammonium sulfate precipitation and four kinds of column chromatography. These procedures yielded a homogeneous enzyme, which was purified approx 1000-fold relative to mouse liver extract. Overall recovery was approx 8%. The purified enzyme had a molecular mass of approx 160 kDa with four identical subunits. The K m value of the enzyme for the catalysis of l-SeMet was 15.5 m M, and the V max was 0.29 units/mg protein. Pyridoxal 5′-phosphate (pyridoxal-P) was required as a cofactor because the holoenzyme could be resolved to the apoenzyme by incubation with hydroxylamine and reconstituted by addition of pyridoxal-P. The enzyme showed the optimum activity at around pH 8.0 and the highest activity at 50°C; it catalyzed the α,γ-elimination reactions of several analogs such as d,l-homocysteine and l-homoserine in addition to l-SeMet. This enzyme also catalyzed the α,β-elimination reaction of Se-methylseleno-l-cysteine. However, l-methionine was inerts. Therefore, the purified enzyme was different from the bacterial l-methionine γ-lyase that metabolizes l-SeMet to CH3SeH, in terms of the substrate specificity. These results were the first identification of a mammalian enzyme that specifically catalyzes the α,γ-elimination reaction of l-SeMet and immediately converts it to CH3SeH, an important metabolite of Se.  相似文献   
6.
A highly sensitive and specific chemiluminescent immunoassay (CLIA) was developed for quantification of growth hormone (GH) in salmonid species. The CLIA for salmon GH was performed using the sandwich method with anti-GH IgG as the first antibody and chemiluminescent acridinium ester-labelled specific anti-GH F(ab′)2 as the second antibody. The measurable range of salmon GH in the CLIA was 39–1250 pg/mL using a short assay (1 day) protocol and 3.9–125 pg/mL in a longer (2-day) assay. The dilution curve in the CLIA of serum from masu salmon (Oncorhynchus masou) was parallel to the standard curve of recombinant chum salmon (Oncorhynchus keta) GH. Seasonal changes of serum GH levels were measured in 1 year-old masu salmon cultivated in a pond from March to November. Their serum GH levels increased during smoltification from March to April, achieved a maximum level of 21 ng/mL in August, and then declined gradually to 11 ng/mL in October. © 1997 John Wiley & Sons, Ltd.  相似文献   
7.
8.
Radioimmunoassay technique for measuring 5α,7α-dihydroxy-11-keto-tetranorprosta-1,16-dioic acid, the main urinary metabolite of PGF1α and PGF2α (PGF2α-MUM), was further improved.It was postulated based on some experimental data that the PGF2α-MUM exists in the urine mostly as dioic acid form, not as δ-lactone formThe daily excretion of PGF2α-MUM in men ranged from 14.43 μg to 36.14 μg and in women from 5.21 μg to 14.25 μg.  相似文献   
9.
  总被引:1,自引:0,他引:1  
Curcumin (diferuloylmethane) is a major component of food flavoring turmeric (Curcuma longa), and has been reported to be anticarcinogenic and anti-inflammatory. Although curcumin was shown to have antioxidant properties, its exact antioxidant nature has not been fully investigated. In this report we have investigated the possible antioxidant properties of curcumin using EPR spectroscopic techniques. Curcumin was found to inhibit the (1)O(2)-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose-dependent manner. (1)O(2) was produced in a photosensitizing system using rose bengal as sensitizer, and was detected as TEMP-(1)O(2) adducts by electron paramagnetic resonance (EPR) spectroscopic techniques using TEMP as a spin-trap. Curcumin at 2.75 microM caused 50% inhibition of TEMP-(1)O(2) adduct formation. However, curcumin only marginally inhibited (24% maximum at 80 microM) reduction of ferricytochrome c in a xanthine-xanthine oxidase system demonstrating that it is not an effective superoxide radical scavenger. Additionally, there was minor inhibition of DMPO-OH adduct formation by curcumin (solubilized in ethanol) when an ethanol control was included in the EPR spin-trapping study, suggesting that curcumin may not be an effective hydroxyl radical scavenger. Together these data demonstrate that curcumin is able only to effectively quench singlet oxygen at very low concentration in aqueous systems.  相似文献   
10.
Gravity is a critical environmental factor affecting the morphology and functions of organisms on the Earth. Plants sense changes in the gravity vector (gravistimulation) and regulate their growth direction accordingly. In Arabidopsis (Arabidopsis thaliana) seedlings, gravistimulation, achieved by rotating the specimens under the ambient 1g of the Earth, is known to induce a biphasic (transient and sustained) increase in cytoplasmic calcium concentration ([Ca2+]c). However, the [Ca2+]c increase genuinely caused by gravistimulation has not been identified because gravistimulation is generally accompanied by rotation of specimens on the ground (1g), adding an additional mechanical signal to the treatment. Here, we demonstrate a gravistimulation-specific Ca2+ response in Arabidopsis seedlings by separating rotation from gravistimulation by using the microgravity (less than 10−4g) conditions provided by parabolic flights. Gravistimulation without rotating the specimen caused a sustained [Ca2+]c increase, which corresponds closely to the second sustained [Ca2+]c increase observed in ground experiments. The [Ca2+]c increases were analyzed under a variety of gravity intensities (e.g. 0.5g, 1.5g, or 2g) combined with rapid switching between hypergravity and microgravity, demonstrating that Arabidopsis seedlings possess a very rapid gravity-sensing mechanism linearly transducing a wide range of gravitational changes (0.5g–2g) into Ca2+ signals on a subsecond time scale.Calcium ion (Ca2+) functions as an intracellular second messenger in many signaling pathways in plants (White and Broadley, 2003; Hetherington and Brownlee, 2004; McAinsh and Pittman, 2009; Spalding and Harper, 2011). Endogenous and exogenous signals are spatiotemporally encoded by changing the free cytoplasmic concentration of Ca2+ ([Ca2+]c), which in turn triggers [Ca2+]c-dependent downstream signaling (Sanders et al., 2002; Dodd et al., 2010). A variety of [Ca2+]c increases induced by diverse environmental and developmental stimuli are reported, such as phytohormones (Allen et al., 2000), temperature (Plieth et al., 1999; Dodd et al., 2006), and touch (Knight et al., 1991; Monshausen et al., 2009). The [Ca2+]c increase couples each stimulus and appropriate physiological responses. In the Ca2+ signaling pathways, the stimulus-specific [Ca2+]c pattern (e.g. amplitude and oscillation) provide the critical information for cellular signaling (Scrase-Field and Knight, 2003; Dodd et al., 2010). Therefore, identification of the stimulus-specific [Ca2+]c signature is crucial for an understanding of the intracellular signaling pathways and physiological responses triggered by each stimulus, as shown in the case of cold acclimation (Knight et al., 1996; Knight and Knight, 2000).Plants often exhibit biphasic [Ca2+]c increases in response to environmental stimuli. Thus, slow cooling causes a fast [Ca2+]c transient followed by a second, extended [Ca2+]c increase in Arabidopsis (Arabidopsis thaliana; Plieth et al., 1999; Knight and Knight, 2000). The Ca2+ channel blocker lanthanum (La3+) attenuated the fast transient but not the following increase (Knight and Knight, 2000), suggesting that these two [Ca2+]c peaks have different origins. Similarly, hypoosmotic shock caused a biphasic [Ca2+]c increase in tobacco (Nicotiana tabacum) suspension-culture cells (Takahashi et al., 1997; Cessna et al., 1998). The first [Ca2+]c peak was inhibited by gadolinium (Gd3+), La3+, and the Ca2+ chelator EGTA (Takahashi et al., 1997; Cessna et al., 1998), whereas the second [Ca2+]c increase was inhibited by the intracellular Ca2+ store-depleting agent caffeine but not by EGTA (Cessna et al., 1998). The amplitude of the first [Ca2+]c peak affected the amplitude of the second increase and vice versa (Cessna et al., 1998). These results suggest that even though the two [Ca2+]c peaks originate from different Ca2+ fluxes (e.g. Ca2+ influx through the plasma membrane and Ca2+ release from subcellular stores, respectively), they are closely interrelated, showing the importance of the kinetic and pharmacological analyses of these [Ca2+]c increases.Changes in the gravity vector (gravistimulation) could work as crucial environmental stimuli in plants and are generally achieved by rotating the specimens (e.g. +180°) in ground experiments. Use of Arabidopsis seedlings expressing apoaequorin, a Ca2+-reporting photoprotein (Plieth and Trewavas, 2002; Toyota et al., 2008a), has revealed that gravistimulation induces a biphasic [Ca2+]c increase that may be involved in the sensory pathway for gravity perception/response (Pickard, 2007; Toyota and Gilroy, 2013) and the intracellular distribution of auxin transporters (Benjamins et al., 2003; Zhang et al., 2011). These two Ca2+ changes have different characteristics. The first transient [Ca2+]c increase depends on the rotational velocity but not angle, whereas the second sustained [Ca2+]c increase depends on the rotational angle but not velocity. The first [Ca2+]c transient was inhibited by Gd3+, La3+, and the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid but not by ruthenium red (RR), whereas the second sustained [Ca2+]c increase was inhibited by all these chemicals. These results suggest that the first transient and second sustained [Ca2+]c increases are related to the rotational stimulation and the gravistimulation, respectively, and are mediated by distinct molecular mechanisms (Toyota et al., 2008a). However, it has not been demonstrated directly that the second sustained [Ca2+]c increase is induced solely by gravistimulation; it could be influenced by other factors, such as an interaction with the first transient [Ca2+]c increase (Cessna et al., 1998), vibration, and/or deformation of plants during the rotation.To elucidate the genuine Ca2+ signature in response to gravistimulation in plants, we separated rotation and gravistimulation under microgravity (μg; less than 10−4g) conditions provided by parabolic flight (PF). Using this approach, we were able to apply rotation and gravistimulation to plants separately (Fig. 1). When Arabidopsis seedlings were rotated +180° under μg conditions, the [Ca2+]c response to the rotation was transient and almost totally attenuated in a few seconds. Gravistimulation (transition from μg to 1.5g) was then applied to these prerotated specimens at the terminating phase of the PF. This gravistimulation without simultaneous rotation induced a sustained [Ca2+]c increase. The kinetic properties of this sustained [Ca2+]c increase were examined under different gravity intensities (0.5g–2g) and sequences of gravity intensity changes (Fig. 2A). This analysis revealed that gravistimulation-specific Ca2+ response has an almost linear dependency on gravitational acceleration (0.5g–2g) and an extremely rapid responsiveness of less than 1 s.Open in a separate windowFigure 1.Diagram of the experimental procedures for applying separately rotation and gravistimulation to Arabidopsis seedlings. Rotatory stimulation (green arrow) was applied by rotating the seedlings 180° under μg conditions, and 1.5g 180° rotation gravistimulation (blue arrow) was applied to the prerotated seedlings after μg.Open in a separate windowFigure 2.Acceleration, temperature, humidity, and pressure in an aircraft during flight experiments. A, Accelerations along x, y, and z axes in the aircraft during PF. The direction of flight (FWD) and coordinates (x, y, and z) are indicated in the bottom graph. The inset shows an enlargement of the acceleration along the z axis (gravitational acceleration) during μg conditions lasting for approximately 20 s. B, Temperature, humidity, and pressure in the aircraft during PF. Shaded areas in graphs denote the μg condition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号