首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   11篇
  2019年   1篇
  2018年   3篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   18篇
  2012年   11篇
  2011年   6篇
  2010年   2篇
  2008年   5篇
  2007年   8篇
  2006年   3篇
  2005年   13篇
  2004年   10篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1993年   7篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有125条查询结果,搜索用时 46 毫秒
1.
To clarify whether cigarette smoking during pregnancy causes an organic alteration in placental estrogen producing ability, we determined the catalytic activity of aromatase by the tritiated water assay, and tissue level of aromatase cytochrome P-450 (P-450arom) by the specific enzyme-linked immunosorbent assay, in placental samples from nonsmokers and smokers. As pregnancy progressed, both aromatase activity and P-450arom concentration increased in placentas from nonsmokers and smokers. However, the gradient of the increase was significantly less in heavy smokers (20 cigarettes a day) than in normal and moderate smokers (<20 cigarettes a day). At term, the mean aromatase activity and P-450arom concentration in placentas from heavy smokers were significantly lower than in nonsmokers and moderate smokers, while aromatase activity per P-450arom (turnover rate) and the mean placental weight were comparable among the three groups. In contrast, the ratio of aryl hydrocarbon hydroxylase activity to aromatase activity was higher in placentas from heavy smokers. Immunohistochemical studies showed that P-450arom was localized in the cytoplasm of syncytiotrophoblasts of chorionic villi in placentas from both nonsmokers and smokers. These results suggest that the induction of placental P-450arom during gestation is suppressed by maternal smoking, resulting in a reduction in estrogen producing ability, while placental xenobiotic P-450 is induced.  相似文献   
2.
Dextranase (EC 3.2.1.11) produced by Chaetomium gracile was purified by sequential chromatographies on CM- and DEAE-cellulose columns, and two active fractions, CD-I and CD-II, were isolated in electrophoretically pure states. The former fraction was obtained in a crystalline state. The estimated molecular weights were 77,000 for CD-I and 71,000 for CD-II, and their isoelectric points were 6.2 and 5.7, respectively. Both active fractions contained a sugar moiety (4.5%). Their amino acid compositions were determined. They were very similar to each other in enzymatic properties: The optimum pH was at around 5.5, and they were stable between pH 5.5 and 11.0, and at temperatures lower than 55°C. They were typical endodextranases, but their maximal degrees of dextran hydrolysis reached 55% as glucose.  相似文献   
3.
The milk fat globule membrane (MFGM) enclosing fat droplets in bovine milk was isolated, and its effects on hydrolysis of milk fat by lipases were investigated by using a gum arabic-stabilized milk fat emulsion as substrate. The addition of isolated MFGM to the reaction mixture markedly inhibited hydrolysis by pancreatic and microbial (Rhizopus delemer) lipases. The inhibition was completely lost on tryptic digestion of MFGM, suggesting that the protein moiety of MFGM played a role in the inhibition. Soluble glycoprotein (SGP) which was isolated from delipidated MFGM produced marked inhibitory activity. The inhibition by SGP was dependent on substrate concentration, suggesting that the inhibition was at least partly due to coverage and blockage of the substrate surface by SGP.  相似文献   
4.
Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes   总被引:1,自引:0,他引:1  
An efficient procedure is described for transformation of calli of the monocotyledonous plant Alstroemeria by Agrobacterium rhizogenes. Calli were co-cultivated with A. rhizogenes strain A13 that harbored both a wild-type Ri-plasmid and the binary vector plasmid pIG121Hm, which included a gene for neomycin phosphotransferase II (NPTII) under the control of the nopaline synthase (NOS) promoter, a gene for hygromycin phosphotransferase (HPT) under the control of the cauliflower mosaic virus (CaMV) 35S promoter, and a gene for -glucuronidase (GUS) with an intron fused to the CaMV 35S promoter. Inoculated calli were plated on medium that contained cefotaxime to eliminate bacteria. Four weeks later, transformed cells were selected on medium that contained 20 mg L–1 hygromycin. A histochemical assay for GUS activity revealed that selection by hygromycin was complete after eight weeks. The integration of the T-DNA of the Ri-plasmid and pIG121Hm into the plant genome was confirmed by PCR. Plants derived from transformed calli were produced on half-strength MS medium supplemented with 0.1 mg L–1 GA3 after about 5 months of culture. The presence of the gusA, nptII, and rol genes in the genomic DNA of regenerated plants was detected by PCR and Southern hybridization, and the expression of these transgenes was verified by RT-PCR.  相似文献   
5.
The main mechanism causing catabolite repression by glucose and other carbon sources transported by the phosphotransferase system (PTS) in Escherichia coli involves dephosphorylation of enzyme IIAGlc as a result of transport and phosphorylation of PTS carbohydrates. Dephosphorylation of enzyme IIAGlc leads to 'inducer exclusion': inhibition of transport of a number of non-PTS carbon sources (e.g. lactose, glycerol), and reduced adenylate cyclase activity. In this paper, we show that the non-PTS carbon source glucose 6-phosphate can also cause inducer exclusion. Glucose 6-phosphate was shown to cause inhibition of transport of lactose and the non-metabolizable lactose analogue methyl-β- D -thiogalactoside (TMG). Inhibition was absent in mutants that lacked enzyme IIAGlc or were insensitive to inducer exclusion because enzyme IIAGlc could not bind to the lactose carrier. Furthermore, we showed that glucose 6-phosphate caused dephosphorylation of enzyme IIAGlc. In a mutant insensitive to enzyme IIAGlc-mediated inducer exclusion, catabolite repression by glucose 6-phosphate in lactose-induced cells was much weaker than that in the wild-type strain, showing that inducer exclusion is the most important mechanism contributing to catabolite repression in lactose-induced cells. We discuss an expanded model of enzyme IIAGlc-mediated catabolite repression which embodies repression by non- PTS carbon sources.  相似文献   
6.
We investigated the mechanism of exercise-induced late cardioprotection against ischemia-reperfusion (I/R) injury. C57BL/6 mice received treadmill exercise (60 min/day) for 7 days at a work rate of 60-70% maximal oxygen uptake. Exercise transiently increased oxidative stress and activated endothelial isoform of nitric oxide synthase (eNOS) during exercise and increased expression of inducible isoform of NOS (iNOS) in the heart after 7 days of exercise. The mice were subjected to regional ischemia by 30 min of occlusion of the left coronary artery, followed by 2 h of reperfusion. Infarct size was significantly smaller in the exercised mice. Ablation of cardiac sympathetic nerve by topical application of phenol abolished oxidative stress, activation of eNOS, upregulation of iNOS, and cardioprotection mediated by exercise. Treatment with the antioxidant N-(2-mercaptopropionyl)-glycine during exercise also inhibited activation of eNOS, upregulation of iNOS, and cardioprotection. In eNOS(-/-) mice, exercise-induced oxidative stress was conserved, but upregulation of iNOS and cardioprotection was lost. Exercise did not confer cardioprotection when the iNOS selective inhibitor 1400W was administered just before coronary artery occlusion or when iNOS(-/-) mice were employed. These results suggest that exercise stimulates cardiac sympathetic nerves that provoke redox-sensitive activation of eNOS, leading to upregulation of iNOS, which acts as a mediator of late cardioprotection against I/R injury.  相似文献   
7.
Protein 6b, encoded by T-DNA from the pathogen Agrobacterium tumefaciens, stimulates the plant hormone-independent division of cells in culture in vitro and induces aberrant cell growth and the ectopic expression of various genes, including genes related to cell division and meristem-related class 1 KNOX homeobox genes, in 6b-expressing transgenic Arabidopsis thaliana and Nicotiana tabacum plants. Protein 6b is found in nuclei and binds to several plant nuclear proteins. Here, we report that 6b binds specifically to histone H3 in vitro but not to other core histones. Analysis by bimolecular fluorescence complementation revealed an interaction in vivo between 6b and histone H3. We recovered 6b from a chromatin fraction from 6b-expressing plant cells. A supercoiling assay and digestion with micrococcal nuclease indicated that 6b acts as a histone chaperone with the ability to mediate formation of nucleosomes in vitro. Mutant 6b, lacking the C-terminal region that is required for cell division-stimulating activity and interaction with histone H3, was deficient in histone chaperone activity. Our results suggest a relationship between alterations in nucleosome structure and the expression of growth-regulating genes on the one hand and the induction of aberrant cell proliferation on the other.  相似文献   
8.
The second window of preconditioning (SWOP) induced by inhalation of volatile anesthetics has been documented in the rat heart and is triggered by nitric oxide synthase (NOS), but involvement of NOS in the mediator phase of isoflurane-induced SWOP has not been demonstrated. We tested the hypothesis that isoflurane-induced SWOP is mediated through upregulation of inducible NOS (iNOS). Rats inhaled 0.75 minimum alveolar concentration (MAC) isoflurane, 1.5 MAC isoflurane, or O2 for 2 h. After 24, 48, 72, and 96 h, the isolated heart was perfused with buffer and subjected to 30 min of ischemia followed by 2 h of reperfusion. Inhalation of 0.75 and 1.5 MAC isoflurane significantly limited infarct size after ischemia-reperfusion 24-72 h after isoflurane inhalation. The maximum effect was obtained 48 h after inhalation of 1.5 MAC isoflurane. Postischemic left ventricular function was improved only 48 h after inhalation of 1.5 MAC isoflurane. iNOS expression and activity in the heart were increased 24-72 h after inhalation of 1.5 MAC isoflurane; this increase was less pronounced after inhalation of 0.75 MAC isoflurane. A selective iNOS inhibitor, 1400W (10 microM), abolished iNOS activation and cardioprotection induced 48 h after inhalation of 1.5 MAC isoflurane. These results suggest that isoflurane inhalation induces SWOP after 24-72 h through overexpression and activation of iNOS in the rat heart.  相似文献   
9.
p38 MAP kinase activation is known to be deleterious not only to mitochondria but also to contractile function. Therefore, p38 MAP kinase inhibition therapy represents a promising approach in preventing reperfusion injury in the heart. However, reversal of p38 MAP kinase-mediated contractile dysfunction may disrupt the fragile sarcolemma of ischemic-reperfused myocytes. We, therefore, hypothesized that the beneficial effect of p38 MAP kinase inhibition during reperfusion can be enhanced when contractility is simultaneously blocked. Isolated and perfused rat hearts were paced at 330 rpm and subjected to 20 min of ischemia followed by reperfusion. p38 MAP kinase was activated after ischemia and early during reperfusion (<30 min). Treatment with the p38 MAP kinase inhibitor SB-203580 (10 microM) for 30 min during reperfusion, but not the c-Jun NH(2)-terminal kinase inhibitor SP-600125 (10 microM), improved contractility but increased creatine kinase release and infarct size. Cotreatment with SB-203580 and the contractile blocker 2,3-butanedione monoxime (BDM, 20 mM) or the ultra-short-acting beta-blocker esmorol (0.15 mM) for the first 30 min during reperfusion significantly reduced creatine kinase release and infarct size. In vitro mitochondrial ATP generation and myocardial ATP content were significantly increased in the heart cotreated with SB-203580 and BDM during reperfusion. Dystrophin was translocated from the sarcolemma during ischemia and reperfusion. SB-203580 increased accumulation of Evans blue dye in myocytes depleted of sarcolemmal dystrophin during reperfusion, whereas cotreatment with BDM facilitated restoration of sarcolemmal dystrophin and mitigated sarcolemmal damage after withdrawal of BDM. These results suggest that treatment with SB-203580 during reperfusion aggravates myocyte necrosis but concomitant blockade of contractile force unmasks cardioprotective effects of SB-203580.  相似文献   
10.
The intestinal absorption of benzyl beta-glucoside (BNZ beta glc) contained in the fruit of Prunus mume SIEB. et ZUCC. (Rosaceae), which is traditionally used as a medicinal food in Japan, was studied in rat intestines. BNZ beta glc was absorbed from the mucosal to serosal sides. Its metabolite, benzyl alcohol (BAL), was also detected on both the mucosal and serosal sides. In the presence of phloridzin (Na(+)/glucose cotransporter (SGLT1) inhibitor) or in the absence of Na+ (driving force), BNZ beta glc absorption was significantly decreased. Transport clearance of BNZ beta glc across the brush border membrane decreased as its concentration increased. These results indicate that BNZ beta glc is transported by SGLT1. Metabolic clearance of BNZ beta glc also decreased as its concentration increased. The amount ratio of BNZ beta glc to BAL on the serosal side increased with the increase of BNZ beta glc concentration. The intestinal availability of BNZ beta glc was lower in the absence of Na+ than in the presence of Na+, indicating that the SGLT1-mediated transport of BNZ beta glc increases intestinal availability by decreasing the intestinal extraction ratio. This neutraceutical study concluded that intestinal carrier-mediated transport across the brush border membrane improves the intestinal availability of nutritionally, pharmacologically or physiologically active compounds that undergo intestinal metabolism (first-pass effect).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号