首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   9篇
  2022年   2篇
  2021年   4篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   9篇
  2014年   8篇
  2013年   13篇
  2012年   14篇
  2011年   18篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   11篇
  2006年   7篇
  2005年   1篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1988年   4篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1972年   2篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
1.
Summary The NAD(P)H fluorescence ofPseudomonas aeruginosa dropped sharply upon addition of nitrate to an anaerobic culture, indicating that denitrification is not limited by mass transfer of nitrate through cell membrane to reach nitrate reductase. The effect of added nitrate concentration on fluorescence drop followed a typical saturation kinetics. The maximum specific denitrification rate under the studied condition was found to be 0.26±0.05 g NO 3 -N/g cells-hr.  相似文献   
2.
Abstract: To investigate the route of axonal Ca2+ entry during anoxia, electron probe x-ray microanalysis was used to measure elemental composition of anoxic tibial nerve myelinated axons after in vitro experimental procedures that modify transaxolemmal Na+ and Ca2+ movements. Perfusion of nerve segments with zero-Na+/Li+-substituted medium and Na+ channel blockade by tetrodotoxin (1 µM) prevented anoxia-induced increases in Na and Ca concentrations of axoplasm and mitochondria. Incubation with a zero-Ca2+/EGTA perfusate impeded axonal and mitochondrial Ca accumulation during anoxia but did not affect characteristic Na and K responses. Inhibition of Na+-Ca2+ exchange with bepridil (50 µM) reduced significantly the Ca content of anoxic axons although mitochondrial Ca remained at anoxic levels. Nifedipine (10 µM), an L-type Ca2+ channel blocker, did not alter anoxia-induced changes in axonal Na, Ca, and K. Exposure of normoxic control nerves to tetrodotoxin, bepridil, or nifedipine did not affect axonal elemental composition, whereas both zero-Ca2+ and zero-Na+ solutions altered normal elemental content characteristically and significantly. The findings of this study suggest that during anoxia, Na+ enters axons via voltage-gated Na+ channels and that subsequent increases in axoplasmic Na+ are coupled functionally to extraaxonal Ca2+ import. Intracellular Na+-dependent, extraaxonal Ca2+ entry is consistent with reverse operation of the axolemmal Na+-Ca2+ exchanger, and we suggest that this mode of Ca2+ influx plays a general role in peripheral nerve axon injury.  相似文献   
3.
E. L. Cabot  P. Doshi  M. L. Wu    C. I. Wu 《Genetics》1993,135(2):477-487
The Responder (Rsp) locus in Drosophila melanogaster is the target locus of segregation distortion and is known to be comprised of a tandem array of 120-bp repetitive sequences. In this study, we first determined the large scale molecular structure of the Rsp locus, which extends over a region of 600 kb on the standard sensitive (cn bw) chromosome. Within the region, small Rsp repeat arrays are interspersed with non-Rsp sequences and account for 10-20% of the total sequences. We isolated and sequenced 32 Rsp clones from three different chromosomes. The main results are: (1) Rsp repeats isolated from the same chromosome are not more similar than those from different chromosomes. This implies either that there are more homologous exchanges at the Rsp locus than expected or, alternatively, that the second chromosomes of D. melanogaster have diverged from one another more recently at the centromeric heterochromatin than at the nearby euchromatin. (2) The repeats usually have a dimeric structure with an average difference of 16% between the left and right halves. The differences allow us to easily identify the products of unequal exchanges. Despite the large differences between the two halves, exchanges have occurred frequently and the majority of them fall within a 29-bp interval of identity between the two halves. Our data thus support the suggestion that recombination depends on short stretches of complete identity rather than long stretches of general homology. (3) Frequent unequal crossover events obscure the phylogenetic relationships between repeats; therefore, different parts of any single repeat could often have different phylogenetic histories. The high rate of unequal crossing over may also help explain the evolutionary dynamics of the Rsp locus.  相似文献   
4.
5.
Salient sensory environments experienced by a parental generation can exert intergenerational influences on offspring. While these data provide an exciting new perspective on biological inheritance, questions remain about causes and consequences of intergenerational influences of salient sensory experience. We previously showed that exposing male mice to a salient olfactory experience, like olfactory fear conditioning, resulted in offspring demonstrating a sensitivity to the odor used to condition the paternal generation and possessing enhanced neuroanatomical representation for that odor. In this study, we first injected RNA extracted from sperm of male mice that underwent olfactory fear conditioning into naïve single‐cell zygotes and found that adults that developed from these embryos had increased sensitivity and enhanced neuroanatomical representation for the odor (Odor A) with which the paternal male had been conditioned. Next, we found that female, but not male offspring sired by males conditioned with Odor A show enhanced consolidation of a weak single‐trial Odor A + shock fear conditioning protocol. Our data provide evidence that RNA found in the paternal germline after exposure to salient sensory experiences can contribute to intergenerational influences of such experiences, and that such intergenerational influences confer an element of adaptation to the offspring. In so doing, our study of intergenerational influences of parental sensory experience adds to existing literature on intergenerational influences of parental exposures to stress and dietary manipulations and suggests that some causes (sperm RNA) and consequences (behavioral flexibility) of intergenerational influences of parental experiences may be conserved across a variety of parental experiences.  相似文献   
6.
The peptidoglycan (PG) layer is an intricate and dynamic component of the bacterial cell wall, which requires a constant balance between its synthesis and hydrolysis. FtsEX complex present on the inner membrane is shown to transduce signals to induce PG hydrolysis. FtsE has sequence similarity with the nucleotide-binding domains (NBDs) of ABC transporters. The NBDs in most of the ABC transporters couple ATP hydrolysis to transport molecules inside or outside the cell. Also, this reaction cycle is driven by the dimerization of NBDs. Though extensive studies have been carried out on the Escherchia coli FtsEX complex, it remains elusive regarding how FtsEX complex helps in signal transduction or transportation of molecules. Also, very little is known about the biochemical properties and ATPase activities of FtsE. Because of its strong interaction with the membrane-bound protein FtsX, FtsE stays insoluble upon overexpression in E. coli, and thus, most studies on E. coli FtsE (FtsEEc) in the past have used refolded FtsE. Here in the present paper, for the first time, we report the soluble expression, purification, and biochemical characterization of FtsE from E. coli. The purified soluble FtsE exhibits high thermal stability, exhibits ATPase activity and has more than one ATP-binding site. We have also demonstrated a direct interaction between FtsE and the cytoplasmic loop of FtsX. Together, our findings suggest that during bacterial division, the ATPase cycle of FtsE and its interaction with the FtsX cytoplasmic loop may help to regulate the PG hydrolysis at the mid cell.  相似文献   
7.

Background

Mood stabilizers used for treating bipolar disorder (BD) selectively downregulate arachidonic acid (AA) turnover (deacylation–reacylation) in brain phospholipids, when given chronically to rats. In vitro studies suggest that one of these, valproic acid (VPA), which is teratogenic, reduces AA turnover by inhibiting the brain long-chain acyl-CoA synthetase (Acsl)4 mediated acylation of AA to AA-CoA. We tested whether non-teratogenic VPA analogues might also inhibit Acsl4 catalyzed acylation, and thus have a potential anti-BD action.

Methods

Rat Acsl4-flag protein was expressed in Escherichia coli, and the ability of three VPA analogues, propylisopropylacetic acid (PIA), propylisopropylacetamide (PID) and N-methyl-2,2,3,3-tetramethylcyclopropanecarboxamide (MTMCD), and of sodium butyrate, to inhibit conversion of AA to AA-CoA by Acsl4 was quantified using Michaelis–Menten kinetics.

Results

Acsl4-mediated conversion of AA to AA-CoA in vitro was inhibited uncompetitively by PIA, with a Ki of 11.4 mM compared to a published Ki of 25 mM for VPA, while PID, MTMCD and sodium butyrate had no inhibitory effect.

Conclusions

PIA's ability to inhibit conversion of AA to AA-CoA by Acsl4 in vitro suggests that, like VPA, PIA may reduce AA turnover in brain phospholipids in unanesthetized rats, and if so, may be effective as a non-teratogenic mood stabilizer in BD patients.  相似文献   
8.
ATP-binding cassette (ABC) transporters belong to one of the largest protein superfamilies that expands from prokaryotes to man. Recent x-ray crystal structures of bacterial and mammalian ABC exporters suggest a common alternating access mechanism of substrate transport, which has also been biochemically substantiated. However, the current model does not yet explain the coupling between substrate binding and ATP hydrolysis that underlies ATP-dependent substrate transport. In our studies on the homodimeric multidrug/lipid A ABC exporter MsbA from Escherichia coli, we performed cysteine cross-linking, fluorescence energy transfer, and cysteine accessibility studies on two reporter positions, near the nucleotide-binding domains and in the membrane domains, for transporter embedded in a biological membrane. Our results suggest for the first time that substrate binding by MsbA stimulates the maximum rate of ATP hydrolysis by facilitating the dimerization of nucleotide-binding domains in a state, which is markedly distinct from the previously described nucleotide-free, inward-facing and nucleotide-bound, outward-facing conformations of ABC exporters and which binds ATP.  相似文献   
9.
10.

Background

A detailed understanding of an RNA's correct secondary and tertiary structure is crucial to understanding its function and mechanism in the cell. Free energy minimization with energy parameters based on the nearest-neighbor model and comparative analysis are the primary methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has been available since 1999. This version contains an expanded sequence dependence of energy parameters and the ability to incorporate coaxial stacking into free energy calculations. We test Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1.

Results

The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%, while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3' halves of the base-pair increases.

Conclusion

Our analysis indicates that the current set of nearest-neighbor energy parameters in conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact distance between the base-pairs is less than 100 nucleotides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号