首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   1篇
  2023年   1篇
  2022年   3篇
  2020年   1篇
  2015年   3篇
  2012年   6篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1985年   1篇
  1982年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有39条查询结果,搜索用时 281 毫秒
1.
Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.  相似文献   
2.
The biosynthetic gene cluster for tobramycin, a 2-deoxystreptamine-containing aminoglycoside antibiotic, was isolated from Streptomyces tenebrarius ATCC 17920. A genomic library of S. tenebrarius was constructed, and a cosmid, pST51, was isolated by the probes based on the core regions of 2-deoxy-scyllo-inosose (DOI) synthase, and L-glutamine:DOI aminotransferase and L-glutamine:scyllo-inosose aminotransferase. Sequencing of 33.9 kb revealed 24 open reading frames (ORFs) including putative tobramycin biosynthetic genes. We demonstrated that one of these ORFs, tbmA, encodes DOI synthase by in vitro enzyme assay of the purified protein. The catalytic residues of TbmA and dehydroquinate synthase were studied by homology modeling. The gene cluster found is likely to be involved in the biosynthesis of tobramycin.  相似文献   
3.
Genes homologous to 2-deoxystreptamine (DOS) biosynthetic genes were isolated from aminoglycoside producers, Micromonospora and Streptomyces spp., using PCR primers based on the core sequences of 2-deoxy-scyllo-inosose (DOI) synthase and L-glutamine: scyllo-inosose aminotransferase (GIA). Identities of 40-45% were observed for DOI synthases, and 65-75% were observed for GIAs. The gene cluster of tobramycin biosynthesis was isolated from the genomic library of Streptomyces tenebrarius using DOI synthase as a probe. Sequencing of 33.9 kb revealed 24 putative open reading frames including the tobramycin biosynthetic gene cluster (13.8 kb) and a transport protein. This cluster encodes proteins homologous to 2-deoxystreptamine biosynthetic enzymes, glycosyltransferase and other aminocyclitols biosynthetic enzymes. Sequence analysis revealed the evolution of DOI synthases from 3-dehydroquinate (DHQ) synthases in actinomycetes. DOI synthases and GIA are therefore useful for cloning biosynthetic genes of DOS-containing aminocyclitol antibiotics or for screening such metabolites producers.  相似文献   
4.
AT2433 from Actinomadura melliaura is an indolocarbazole antitumor antibiotic structurally distinguished by its unique aminodideoxypentose‐containing disaccharide moiety. The corresponding sugar nucleotide‐based biosynthetic pathway for this unusual sugar derives from comparative genomics where AtmS13 has been suggested as the contributing sugar aminotransferase (SAT). Determination of the AtmS13 X‐ray structure at 1.50‐Å resolution reveals it as a member of the aspartate aminotransferase fold type I (AAT‐I). Structural comparisons of AtmS13 with homologous SATs that act upon similar substrates implicate potential active site residues that contribute to distinctions in sugar C5 (hexose vs. pentose) and/or sugar C2 (deoxy vs. hydroxyl) substrate specificity. Proteins 2015; 83:1547–1554. © 2015 Wiley Periodicals, Inc.  相似文献   
5.
Classical UDP-glucose 6-dehydrogenases (UGDHs; EC 1.1.1.22) catalyze the conversion of UDP-α-d-glucose (UDP-Glc) to the key metabolic precursor UDP-α-d-glucuronic acid (UDP-GlcA) and display specificity for UDP-Glc. The fundamental biochemical and structural study of the UGDH homolog CalS8 encoded by the calicheamicin biosynthetic gene is reported and represents one of the first studies of a UGDH homolog involved in secondary metabolism. The corresponding biochemical characterization of CalS8 reveals CalS8 as one of the first characterized base-permissive UGDH homologs with a >15-fold preference for TDP-Glc over UDP-Glc. The corresponding structure elucidations of apo-CalS8 and the CalS8·substrate·cofactor ternary complex (at 2.47 and 1.95 Å resolution, respectively) highlight a notably high degree of conservation between CalS8 and classical UGDHs where structural divergence within the intersubunit loop structure likely contributes to the CalS8 base permissivity. As such, this study begins to provide a putative blueprint for base specificity among sugar nucleotide-dependent dehydrogenases and, in conjunction with prior studies on the base specificity of the calicheamicin aminopentosyltransferase CalG4, provides growing support for the calicheamicin aminopentose pathway as a TDP-sugar-dependent process.  相似文献   
6.
Sphingosine kinase (SphK) has emerged as an attractive target for cancer therapeutics due to its role in cell survival. SphK phosphorylates sphingosine to form sphingosine 1-phosphate (S1P), which has been implicated in cancer growth and survival. SphK exists as two different isotypes, namely SphK1 and SphK2, which play different roles inside the cell. In this report, we describe SphK inhibitors based on the immunomodulatory drug, FTY720, which is phosphorylated by SphK2 to generate a S1P mimic. Structural modification of FTY720 provided a template for synthesizing new inhibitors. A diversity-oriented synthesis generated a library of SphK inhibitors with a novel scaffold and headgroup. We have discovered subtype selective inhibitors with K(i)'s in the low micromolar range. This is the first report describing quaternary ammonium salts as SphK inhibitors.  相似文献   
7.
Sphingosine kinases (SphKs) catalyze the transfer of phosphate from adenosine triphosphate (ATP) to sphingosine to generate sphingosine 1-phosphate (S1P), an important bioactive lipid molecule that mediates a diverse range of cell signaling processes. The conventional assay of SphK enzymatic activity uses [γ-32P]ATP and sphingosine as substrates, with the radiolabeled S1P product recovered by organic extraction, displayed by thin layer chromatography, and quantified by liquid scintillation counting. Although this assay is sensitive and accurate, it is slow and labor-intensive; thus, it precludes the simultaneous screening of more than a few inhibitor compounds. Here we describe a 96-well assay for SphKs that is rapid and reproducible. Our method, which takes advantage of the limited solubility of S1P, detects radioactive S1P adhering to the plate by scintillation proximity counting. Our procedure obviates extraction into organic solvents, postreaction transfers, and chromatography. Furthermore, our assay enables assessment of both inhibitors and substrates, and it can detect endogenous SphK activity in cell and tissue extracts. The SphK kinetic parameter, Km, and the Ki values of inhibitors determined with our assay and the conventional assay were indistinguishable. These results document that our assay is well-suited for the screening of chemical libraries of SphK inhibitors.  相似文献   
8.
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.  相似文献   
9.
The organization of the 2-deoxystreptamine (DOS) biosynthetic gene cluster of Micromonospora echinospora has been determined. Sequencing of a 14.04 kb-region revealed twelve open reading frames (ORFs): four putative DOS biosynthetic genes (gtmA, B, C, and D), five amino sugars biosynthetic genes (gtmE, G, H, I, and gacB), two aminoglycoside resistance genes (gtmF and J) as well as a hypothetical ORF (gacA). One of the putative DOS biosynthetic genes, gtmA, was expressed in Escherichia coli, and the purified protein was shown to convert glucose-6-phosphate (G-6-P) to 2-deoxy-scyllo-inosose (DOI), a key step in DOS biosynthesis. In addition gtmJ was expressed in Streptomyces lividans and shown to confer gentamicin resistance. Thus gtmA and gtmJ are implicated in the biosynthesis of gentamicin and in resistance to it, respectively.  相似文献   
10.
An actinomycetes expression vector (pIBR25) was constructed and applied to express a gene from the kanamycin biosynthetic gene cluster encoding 2-deoxy-scyllo-inosose synthase (kanA) in Streptomyces lividans TK24. The expression of kanA in pIBR25 transformants reached a maximum after 72 h of culture. The plasmid pIBR25 showed better expression than pSET152, and resulted in the formation of insoluble KanA when it was expressed in Escherichia coli. This strategy thus provides a valuable tool for expressing aminoglycoside-aminocyclitols (AmAcs) biosynthetic genes in Streptomyces spp.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号