首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   5篇
  国内免费   2篇
  2022年   1篇
  2018年   2篇
  2017年   2篇
  2014年   4篇
  2013年   3篇
  2012年   12篇
  2011年   10篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   3篇
  1998年   5篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
中国的炭疽杆菌DNA分型及其地理分布   总被引:7,自引:1,他引:6  
炭疽广泛分布于中国各地,特别是西部地区,并经常造成人畜疾病,在一项合作研究中,用多位点VNTR分析(MLVA)对从1952-1998年自中国主要地理流行区域分离的病人,病畜和土壤等来源的炭疽杆菌进行了基因分型,MLVA分析结果揭示了21种新的基因型,其等位基因组合在以前世界范围分离物的研究中未曾发现,此外,分离物的分群显示,A3b组是地理上最广泛分布的基因组,说明该组可能是中国的“地方流行株”。而来自古丝绸之路重要贸易中心新疆的大量分离株其基因型特别分散。  相似文献   
2.
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded RNAs about 21 nucleotides in length. miRNAs have been shown to regulate gene expression and thus influence a wide range of physiological and pathological processes. Moreover, they are detected in a variety of sources, including tissues, serum, and other body fluids, such as saliva. The role of miRNAs is evident in various malignant and nonmalignant diseases, and there is accumulating evidence also for an important role of miRNAs in systemic rheumatic diseases. Abnormal expression of miRNAs has been reported in autoimmune diseases, mainly in systemic lupus erythematosus and rheumatoid arthritis. miRNAs can be aberrantly expressed even in the different stages of disease progression, allowing miRNAs to be important biomarkers, to help understand the pathogenesis of the disease, and to monitor disease activity and effects of treatment. Different groups have demonstrated a link between miRNA expression and disease activity, as in the case of renal flares in lupus patients. Moreover, miRNAs are emerging as potential targets for new therapeutic strategies of autoimmune disorders. Taken together, recent data demonstrate that miRNAs can influence mechanisms involved in the pathogenesis, relapse, and specific organ involvement of autoimmune diseases. The ultimate goal is the identification of a miRNA target or targets that could be manipulated through specific therapies, aiming at activation or inhibition of specific miRNAs responsible for the development of disease.  相似文献   
3.

Introduction  

The presence of anti-topoisomerase I (topo I) antibodies is a classic scleroderma (SSc) marker presumably associated with a unique clinical subset. Here the clinical association of anti-topo I was reevaluated in unselected patients seen in a rheumatology clinic setting.  相似文献   
4.
Elucidating the sources of genetic variation within microsatellite alleles has important implications for understanding the etiology of human diseases. Mismatch repair is a well described pathway for the suppression of microsatellite instability. However, the cellular polymerases responsible for generating microsatellite errors have not been fully described. We address this gap in knowledge by measuring the fidelity of recombinant yeast polymerase δ (Pol δ) and ? (Pol ?) holoenzymes during synthesis of a [GT/CA] microsatellite. The in vitro HSV-tk forward assay was used to measure DNA polymerase errors generated during gap-filling of complementary GT(10) and CA(10)-containing substrates and ~90 nucleotides of HSV-tk coding sequence surrounding the microsatellites. The observed mutant frequencies within the microsatellites were 4 to 30-fold higher than the observed mutant frequencies within the coding sequence. More specifically, the rate of Pol δ and Pol ? misalignment-based insertion/deletion errors within the microsatellites was ~1000-fold higher than the rate of insertion/deletion errors within the HSV-tk gene. Although the most common microsatellite error was the deletion of a single repeat unit, ~ 20% of errors were deletions of two or more units for both polymerases. The differences in fidelity for wild type enzymes and their exonuclease-deficient derivatives were ~2-fold for unit-based microsatellite insertion/deletion errors. Interestingly, the exonucleases preferentially removed potentially stabilizing interruption errors within the microsatellites. Since Pol δ and Pol ? perform not only the bulk of DNA replication in eukaryotic cells but also are implicated in performing DNA synthesis associated with repair and recombination, these results indicate that microsatellite errors may be introduced into the genome during multiple DNA metabolic pathways.  相似文献   
5.
6.
Microsatellite DNA synthesis represents a significant component of human genome replication that must occur faithfully. However, yeast replicative DNA polymerases do not possess high fidelity for microsatellite synthesis. We hypothesized that the structural features of Y-family polymerases that facilitate accurate translesion synthesis may promote accurate microsatellite synthesis. We compared human polymerases κ (Pol κ) and η (Pol η) fidelities to that of replicative human polymerase δ holoenzyme (Pol δ4), using the in vitro HSV-tk assay. Relative polymerase accuracy for insertion/deletion (indel) errors within 2-3 unit repeats internal to the HSV-tk gene concurred with the literature: Pol δ4 > Pol κ or Pol η. In contrast, relative polymerase accuracy for unit-based indel errors within [GT](10) and [TC](11) microsatellites was: Pol κ ≥ Pol δ4 > Pol η. The magnitude of difference was greatest between Pols κ and δ4 with the [GT] template. Biochemically, Pol κ displayed less synthesis termination within the [GT] allele than did Pol δ4. In dual polymerase reactions, Pol κ competed with either a stalled or moving Pol δ4, thereby reducing termination. Our results challenge the ideology that pol κ is error prone, and suggest that DNA polymerases with complementary biochemical properties can function cooperatively at repetitive sequences.  相似文献   
7.
1. Rapid expansion and intensification of anthropogenic activities in the 20th century has caused profound changes in freshwater assemblages. Unfortunately, knowledge of the extent and causes of species loss (SL) is limited due to the lack of reliable historical data. An unusual data set allows us to compare changes in the most sensitive of aquatic insect orders, the Plecoptera, at some 170 locations in the Czech Republic between two time periods, 1955–1960 and 2006–2010. Historical data (1890–1911) on assemblages of six lowland rivers allow us to infer even earlier changes. 2. Regional stonefly diversity decreased in the first half of the 20th century. Streams at lower altitudes lost a substantial number of species, which were never recovered. In the second half of the century, large‐scale anthropogenic pressure caused SL in all habitats, leading to a dissimilarity of contemporary and previous assemblages. The greatest changes were found at sites affected by organic pollution and a mixture of organic pollution and channelisation or impoundment. Colonisation of new habitats was observed in only three of the 80 species evaluated. 3. Species of moderate habitat specialisation and tolerance to organic pollution were most likely to be lost. Those with narrow specialisations in protected habitats were present in both historical and contemporary collections. 4. Contemporary assemblages are the consequence of more than a 100 years of anthropogenic impacts. In particular, streams at lower altitude and draining intensively exploited landscapes host a mere fragment of the original species complement. Most stonefly species are less frequently present than before, although their assemblages remain almost intact in near‐natural mountain streams. Our analyses demonstrate dramatic restriction of species ranges and, in some cases, apparent changes in altitudinal preference throughout the area.  相似文献   
8.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
9.
Approximately 30% of human tumors sequenced to date harbor mutations in the POLB gene that are not present in matched normal tissue. Many mutations give rise to enzymes that contain non-synonymous single amino acid substitutions, several of which have been found to have aberrant activity or fidelity and transform cells when expressed. The DNA Polymerase β (Pol β) variant Asp160Asn (D160N) was first identified in a gastric tumor. Expression of D160N in cells induces cellular transformation as measured by hyperproliferation, focus formation, anchorage-independent growth and invasion. Here, we show that D160N is an active mutator polymerase that induces complex mutations. Our data support the interpretation that complex mutagenesis is the underlying mechanism of the observed cellular phenotypes, all of which are linked to tumorigenesis or tumor progression.  相似文献   
10.
Microsatellites are ubiquitously present in eukaryotic genomes and are implicated as positive factors in evolution. At the nucleotide level, microsatellites undergo slippage events that alter allele length and base changes that interrupt the repetitive tract. We examined DNA polymerase errors within a [T]11 microsatellite using an in vitro assay that preferentially detects mutations other than unit changes. We observed that human DNA polymerase kappa (Pol κ) inserts dGMP and dCMP within the [T]11 mononucleotide repeat, producing an interrupted 12-bp allele. Polymerase β produced such interruptions at a lower frequency. These data demonstrate that DNA polymerases are capable of directly producing base interruptions within microsatellites. At the molecular level, expanded microsatellites have been implicated in DNA replication fork stalling. Using an in vitro primer extension assay, we observed sequence-specific synthesis termination by DNA polymerases within mononucleotides. Quantitatively, intense, polar pausing was observed for both pol κ and polymerase α-primase within a [T]11 allele. A mechanism is proposed in which pausing results from DNA bending within the duplex stem of the nascent DNA. Our data support the concept of a microsatellite life-cycle, and are consistent with the models in which DNA sequence or secondary structures contributes to non-uniform rates of replication fork progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号