首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   376篇
  免费   20篇
  2022年   3篇
  2018年   3篇
  2016年   4篇
  2015年   10篇
  2014年   4篇
  2013年   8篇
  2012年   16篇
  2011年   13篇
  2010年   10篇
  2009年   9篇
  2008年   10篇
  2007年   20篇
  2006年   22篇
  2005年   19篇
  2004年   15篇
  2003年   11篇
  2002年   14篇
  2001年   7篇
  2000年   4篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1994年   5篇
  1993年   6篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   11篇
  1983年   7篇
  1982年   11篇
  1981年   6篇
  1980年   7篇
  1979年   11篇
  1977年   4篇
  1975年   6篇
  1973年   4篇
  1969年   4篇
  1959年   4篇
  1953年   2篇
  1952年   2篇
  1951年   2篇
  1949年   3篇
  1939年   2篇
  1937年   2篇
  1936年   3篇
排序方式: 共有396条查询结果,搜索用时 31 毫秒
1.
Gray matter and white matter membranes catalyze the transfer of label from UDP-N-acetyl-[14C] glucosamine into N-acetyl[14C]glucosaminyl-pyrophosphoryl-dolichol, N,N′-diacetyl [14C]chitobiosyl-pyrophosphoryl-dolichol, and N-acetyl[14C]glucosamine-labeled glycoprotein. Gel filtration of the Pronase digests of gray matter N-acetyl[14C]glucosamine-labeled glycoprotein reveals two N-acetyl[14C]glucosamine-labeled glycopeptide fractions. One fraction (A) contains approximately eight glycose units. All of the radioactivity is at nonreducing termini and can be released by treatment with an exo-β-N-acetylglucosaminidase. A smaller N-acetyl[14C]glucosamine-labeled glycopeptide (B) is recovered in the elution volume expected for an asparaginyl disaccharide. Structural studies show that the labeled saccharide unit in glycopeptide B is N,N′-diacetyl[14C]chitobiose. The linkage between the 14C-labeled disaccharide and the polypeptide has the properties of an N-glycosidic attachment to asparagine. Only the larger N-acetyl[14C]glucosamine-labeled glycopeptide (A) is found in Pronase digests of white matter membrane N-acetyl[14C]glucosamine-labeled glycoprotein after incubation with UDP-N-acetyl[14C]glucosamine. When gray matter membranes are incubated with UDP-N-acetyl[14C]glucosamine in the presence of tunicamycin or UMP, the labeling of glycolipid and the asparaginyl disaccharide is inhibited. UMP and tunicamycin have no effect on the transfer of N-acetyl[14C]glucosamine to external acceptor sites of the larger glycopeptide (A). The transfer of N,N′-diacetyl[14C]-chitobiose from carrier lipid to protein is observed when extensively washed membranes containing endogenous, prelabeled 14C-labeled glycolipids are incubated in the presence or absence of unlabeled GDP-mannose. UMP treatment of the prelabeled membranes selectively discharged over 80% of the label from N-acetyl[14C]glucosaminyl-pyrophosphoryl-dolichol, but had no effect on the transfer of the 14C-labeled disaccharide to protein. All of these results are concordant with transfer of N,N′-diacetylchitobiose from dolichyl diphosphate to gray matter glycoprotein. The major membrane glycoprotein labeled by the lipid-mediated [14C]disaccharide transfer reaction has an apparent molecular weight of 24,000. Tunicamycin prevents the enzymatic labeling of the gray matter glycoprotein having an apparent molecular weight of 24,000.  相似文献   
2.
3.
Fowl plague virus, strain Dutch, was metabolically labeled withd-[2-3H]mannose, or withd-[6-3H]glucosamine, and the small subunit (HA2; 0.8 mg in total) of the viral hemagglutinin was isolated by preparative sodium dodecylsulfate-polyacrylamide gel electrophoresis. After proteolytic digestion, the radioactive oligosaccharides were sequentially liberated from the glycopeptides by treatment with different endo--N-acetylglucosaminidases and with peptide:N-glycosidase or, finally, by hydrazinolysis. In this manner, four groups of glycans could be obtained by consecutive gel filtrations and were subfractionated by HPLC. The structures of the individual oligosaccharides were analyzed by micromethylation, by acetolysis or by digestion with exoglycosidases. The major species amongst the high mannose glycans at Ans-406 of the viral glycopolypeptide were found to be Man1-2Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNac1-4GlcNAc and Man1-3(Man1-2Man1-6)Man1-6(Man1-2Man1-2Man1-3)Man1-4GlcNAc1-4GlcNAc, while the complex glycans at Asn-478 are predominantly GlcNAc1-2Man1-3(GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc (lacking, in part, one of the outerN-acetylglucosamine residues) and GlcNAc1-2Man1-3(Gal1-4GlcNAc1-2Man1-6)Man1-4GlcNAc1-4GlcNAc.Abbreviation BSA bovine serum albumin - endo D (F,H) endo--N-acetyl-d-glucosaminidase D (F,H) - HA hemagglutinin (HA1, large subunit of HA - HA2 small subunit - FPV fowl plague virus - PNGase F peptide:N-glycosidase F - SDS sodium dodecylsulfate  相似文献   
4.
Calf brain 3'-phosphoadenosine 5'-phosphosulfate (PAPS):proteoheparan sulfate (PHS) N-sulfotransferase activity is solubilized by extracting salt-washed microsomes with 1% Cutscum. A protocol is described for the partial purification of the sulfotransferase activity utilizing: (1) diethylaminoethyl (DEAE)-Sephacel, (2) heparin-Sepharose CL-6B, and (3) 3',5'-ADP-agarose as chromatographic supports. Sulfotransferase activity was followed by using 3'-phosphoadenosine 5'-phospho[35S]sulfate and endogenous acceptors in heat-inactivated microsomes as exogenous substrates. Two chromatographically distinct fractions (ST1 and ST2) of sulfotransferase activity are resolved on DEAE-Sephacel. Both sulfotransferase activities have been partially purified and characterized. An apparent purification of the two N-sulfotransferase fractions of 22- to 29-fold, relative to the microsomal activity, is achieved by this procedure. Since ST1 appears to represent approximately 24% of the total microsomal activity, a purification of 89-fold has been estimated for this fraction. Neither sulfotransferase activity was stimulated by MnCl2, MgCl2, or CaCl2 added at 10 mM, nor inhibited by the presence of 10 mM EDTA. ST1 and ST2 are optimally active at pH 7.5-8. Apparent Km values for PAPS of 2.3 microM and 0.9 microM have been determined for ST1 and ST2, respectively. ST1 exhibits N-sulfotransferase activity primarily and is inhibited by phosphatidylserine whereas the ST2 fraction contains a mixture of N- and O-sulfotransferase activity and is stimulated by phosphatidylserine, phosphatidylcholine, and lysophosphatidylcholine. The detection of two chromatographically distinct sulfotransferase activities raises the possibility that N-sulfation of proteoheparan sulfates could be catalyzed by more than one enzyme, and that N-sulfation and O-sulfation of proteoglycans are catalyzed by separate enzymes in nervous tissue.  相似文献   
5.
Abstract: Primary cultures were prepared from newborn rat brain. After 16-18 days, they consisted mainly of mature and immature astrocytes and oligodendrocytes, as judged by immunohistochemistry. To study the metabolism of ethanolamine glycerophospholipids, the cells were incubated with 1-[1-3H]alkyl- sn -glycero-3-phosphoethanolamine (1-alkyl-GPE), for 1–20 h. Five main products were formed: 1-alkyl-2-acyl-GPE; 1-alkyl-2-acyksn-glycero-3-phosphocholine (1-alkyl-2-acyl-GPC); 1-alkenyl-2-acyl-GPE (ethanolamine plasmalogen); 1-alkenyl-2-acyl-GPC (choline plasmalogen); and 1-alkyl-glycerol. Acylation of the substrate was the main reaction during the first 3 h of incubation, whereas desaturation to plasmaiogen reached a maximum after 12 h. Greater amounts of radioactivity were observed in the phosphatidylcholine fraction after longer incubation times. Only small amounts of choline plasmalogen were observed. The phosphatidylethanolamine fraction consisted of 26.5% diacyl-, 27.5% alkyl-acyl-, and 46.0% alkenyl-acyl- compounds, whereas the corresponding data for the phosphatidylcholine fraction were 78.5, 16.4, and 5.1%, respectively, after 20 h of incubation. Hydrolysis of the substrate to 1-alkyl-glycerol was a minor reaction.  相似文献   
6.
Summary A morphogenetic factor which induces inTriturus gastrula ectoderm tissues which are derived from mesoderm and endoderm has been extracted from chicken and amphibian embryos. The factor which is protein in nature has been obtained from chicken embryos in a highly purified state.The biological activity of the chicken factor is partially inhibited when the factor is combined with chicken DNA or sonicated chicken DNA.When the 3H-labelled factor is combined with sonicated DNA and then centrifuged on a sucrose gradient the factor migrates in part with the DNA. This indicates that the factor is bound to DNA.The inferences from these results are discussed with regard to the possible mechanism of action of the factor and the molecular mechanism of differentiation.  相似文献   
7.
8.
When radiolabeled serine is incubated with a particulate fraction from Saccharomyces cerevisiae, radioactivity is incorporated initially into phosphatidylserine and gradually appears in phosphatidylethanolamine. Because decarboxylation of phosphatidylserine is blocked by hydroxylamine, phosphatidylserine synthase can be assayed separately. The yeast phosphatidylserine synthase activity 1) exhibits a divalent cation requirement; 2) is stimulated by exogenous CDP-diolein (apparent Km = 0.17 mM); 3) has an apparent Km = 4 mM for L-serine; 4) has a neutral pH optimum; 5) is inhibited by p-hydroxymercuribenzoate; and 6) is reversible in the presence of 5'-CMP, but not 2'-CMP, 3'-CMP, or 5'-AMP. The phospholipid-synthesizing activity is solubilized with Triton X-100 and the enzymatic parameters have been compared with the particulate form of the enzyme. Detergent extracts catalyze the conversion of exogenous purified [31P]CDP-diglyceride to [32P]phosphatidylserine in the presence of Mn2+ and L-serine. Enzyme preparations from cells grown in the presence of choline, that have reduced phospholipid methylation activity (Waechter, C. J., Steiner, M. R., and Lester, R. L. (1969) J. Biol. Chem. 244, 3419-3422), also have substantially less phosphatidylserine synthase activity compared to identical preparations grown in the absence of choline. When choline, phosphocholine, CDP-choline, and phosphatidylcholine are present in vitro, there is no direct inhibitory effect on phosphatidylserine synthase activity. While the inclusion of choline in the growth medium caused a significant reduction in phosphatidylserine synthase activity, it did not appreciably effect the apparent Km values for L-serine and CDP-diglyceride. These results are consistent with choline-grown cells containing less phosphatidylserine synthase activity because of lower amounts of enzyme present or perhaps less active enzyme due to covalent modification.  相似文献   
9.
The initial rate of dolichyl phosphate mannose biosynthesis was measured in white-matter membranes from pig brain at various ages from before birth throughout the period of most rapid brain development. Dolichyl phosphate mannose synthase activity increased from prenatal values to a maximum in 3 week-old animals, and gradually decreased to adult values after 8 weeks of age. The nature of the developmental change was investigated by enzymic and biochemical comparisons of the membrane preparations from the most active age (3 weeks) and adult controls. The specific activity of dolichyl phosphate mannose synthase in preparations from actively myelinating animals was approx. 3-fold higher than adults when mannolipid formation was assayed with saturating concentrations of GDP-[14C]mannose and utilizing only endogenous acceptor lipid. No major variations were found in the apparent Km values for GDP-mannose or exogenous dolichyl monophosphate. However, the ratio of dolichyl phosphate mannose synthase activity for myelinating animals/adult animals decreased significantly when large amounts of exogenous dolichyl monophosphate were added to the incubation mixtures. Dolichyl phosphate mannose synthase activity was also compared in white-matter membranes depleted of endogenous dolichyl monophosphate by enzymic mannosylation or treatment with butanol. When these preparations were assayed with identical amounts of exogenous dolichyl monophosphate, the dolichyl monophosphate-depleted membranes from actively myelinating animals contained only 20–30% more dolichyl phosphate mannose synthase activity. Overall, these studies strongly suggest that the developmental change in dolichyl phosphate mannose synthase activity is due primarily to the presence of a relatively lower amount of endogenous dolichyl monophosphate being accessible to the mannosyltransferase in the white-matter membranes from adult animals.  相似文献   
10.
  1. With fumarate as the terminal electron acceptor and either H2 or formate as donor, Vibrio succinogenes could grow anaerobically in a mineral medium using fumarate as the sole carbon source. Both the growth rate and the cell yield were increased when glutamate was also present in the medium.
  2. Glutamate was incorporated only into the amino acids of the glutamate family (glutamate, glutamine, proline and arginine) of the protein. The residual cell constituents were synthesized from fumarate.
  3. Pyruvate and phosphoenolpyruvate, as the central intermediates of most of the cell constituents, were formed through the action of malic enzyme and phosphoenolpyruvate synthetase. Fructose-1,6-bisphosphate aldolase was present in the bacterium suggesting that this enzyme is involved in carbohydrate synthesis.
  4. In the absence of added glutamate the amino acids of the glutamate family were synthesized from fumarate via citrate. The enzymes involved in glutamate synthesis were present.
  5. During growth in the presence of glutamate, net reducing equivalents were needed for cell synthesis. Glutamate and not H2 or formate was used as the source of these reducing equivalents. For this purpose part of the glutamate was oxidized to yield succinate and CO2.
  6. The α-ketoglutarate dehydrogenase involved in this reaction was found to use ferredoxin as the electron acceptor. The ferredoxin of the bacterium was reoxidized by means of a NADP-ferredoxin oxidoreductase. Enzymes catalyzing the reduction of NAD, NADP or ferredoxin by H2 or formate were not detected in the bacterium.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号