首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Summary Absolute rates of protein and collagen synthesis based on prolyl-tRNA as the precursor were determined in two age groups of IMR-90 human lung fibroblasts. Compared with midrange fibroblasts [population doubling level (PDL)=20 to 30] aged fibroblasts (PDL>40) were larger in siz in terms of protein and RNA per cell, generally proliferated more slowly, exhibited different steady state [3H]proline transfer RNA (tRNA) precursor pool specific radioactivities, synthesized collagen at a substantially lower rate, and exhibited a reduction in the percent commitment to collagen synthesis. Total protein synthetic rates were reduced slightly in aged versus midrange fibroblasts but the difference was not statistically significant. Proliferative capacity (PDL/wk) correlated better with these changes than cumulative PDL. Cell size (protein/cell) was the variable that had the highest correlation with the reduction in collagen synthesis observed in human lung fibroblasts. Thus, an important differentiated function of human lung fibroblasts, collagen synthesis, is greatly diminished in vitro in large, slowly dividing fibroblasts. This study was supported in part by Grants PHS HL 14212 (Pulmonary SCOR) from the National Institutes of Health and by a postdoctoral research fellowship (J. N. H.) from the American Lung Association.  相似文献   
3.
Chondrocyte cultures were established from foetal bovine tracheal cartilage and maintained in Ham's F12 medium with or without 10% (v/v) foetal calf serum. The proteoglycans were isolated and characterized. (1) The proteoglycans from cultures both with and without serum distributed in associative or dissociative CsCl gradients like proteoglycans from cartilage tissue. (2) The amino acid composition, protein contents and glucosamine/galactosamine ratios were grossly identical with those of the tissue derived proteoglycans. (3) Sedimentation coefficients (s0) for the monomers were 21.0S and 22.7S from cultures without and with serum respectively. The s0 values obtained for aggregates were 72.3S and 93.2S respectively. The limiting viscosity numbers [η] were 248ml/g and 298ml/g respectively. These data corresponded well to those obtained for the tissue-derived proteoglycans. (4) The sizes of the core proteins and chondroitin sulphate chains respectively were the same for both types of cell-culture proteoglycans and similar to those of the tissue proteoglycans. Both the keratan sulphate-rich region and the hyaluronic acid-binding region were identified. The latter, however, was not resistant to limit digestion with trypsin, in contrast with the fragment derived from the bovine nasal cartilage. (5) About 70% of the cell-culture proteoglycans chromatographed in the void volume on a Sepharose 2B column, whereas reduced and alkylated samples (monomers) chromatographed completely included in the column. The two link proteins present in A1 preparations of cartilage proteoglycans were also present in A1 preparations of cell-culture proteoglycans. (6) A minor portion (10%) of the 35S-labelled proteoglycans in the cultures was associated with the cells. Reduced and alkylated samples were larger compared with the monomers in the medium, and chromatographed partly (25%) excluded on the Sepharose 2B column. A larger proportion (50%) of the non-reduced samples chromatographed in the void volume of the column.  相似文献   
4.
In vitro procollagen production rates can be determined by culturing cells in the presence of [3H]proline and measuring the subsequent formation of [3H]hydroxyproline. Values of actual procollagen production can be calculated if the total radioactivity and the specific activity of the newly synthesized procollagen is known. A simple microanalytical method for measuring procollagen specific activity in order to determine procollagen production by lung fibroblasts in vitro is reported. Confluent fibroblasts (IMR-90) were cultured in fresh medium containing [3H]proline, and [3H]hydroxyproline production and prolyl hydroxylation were measured. Hydroxyproline specific activity of nondialyzable procollagen in culture medium as well as extracellular and intracellular free proline specific activity were determined by an ultramicromethod in which the radiolabeled amino acids were reacted with [14C]dansyl chloride of known specific activity [Airhart et al. (1979) Anal. Biochem. 96, 45–55]. Procollagen production rates were readily determined by this method using 5 to 20 μCi [3H]proline and approximately 106 cells. It was found that 3H-procollagen production rate into culture medium was constant after a lag of 1.6 h, while procollagen production rate (0.23 pmol/μg DNA · h) was constant from time zero to 9 h. The specific activities of extracellular and intracellular free proline were not constant during the labeling period, nor were they equal to procollagen specific activity. These data indicate that free proline pool specific activities are not a valid measure of procollagen specific activity. The experimental approach described obviates the need to define or characterize the proline precursor pool from which procollagen is synthesized, and may be readily applied to determine fibroblast procollagen production rates in vitro.  相似文献   
5.
Pulmonary surface film stability and composition   总被引:3,自引:0,他引:3  
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号