首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1525篇
  免费   165篇
  国内免费   1篇
  2022年   16篇
  2021年   32篇
  2020年   11篇
  2019年   18篇
  2018年   27篇
  2017年   19篇
  2016年   48篇
  2015年   61篇
  2014年   57篇
  2013年   87篇
  2012年   90篇
  2011年   70篇
  2010年   52篇
  2009年   59篇
  2008年   71篇
  2007年   79篇
  2006年   65篇
  2005年   70篇
  2004年   66篇
  2003年   67篇
  2002年   59篇
  2001年   32篇
  2000年   28篇
  1999年   33篇
  1998年   19篇
  1997年   23篇
  1996年   16篇
  1995年   10篇
  1994年   11篇
  1993年   13篇
  1992年   17篇
  1991年   20篇
  1990年   27篇
  1989年   17篇
  1988年   21篇
  1987年   15篇
  1985年   15篇
  1984年   18篇
  1983年   15篇
  1982年   16篇
  1981年   14篇
  1980年   11篇
  1979年   9篇
  1978年   11篇
  1977年   12篇
  1976年   14篇
  1975年   10篇
  1974年   11篇
  1973年   10篇
  1969年   9篇
排序方式: 共有1691条查询结果,搜索用时 343 毫秒
1.
2.
3.
4.
The plastic response of phenotypic traits to environmental change is a common research focus in several disciplines - from ecology and evolutionary biology to physiology and molecular genetics. The use of model systems such as the flowering plant Arabidopsis thaliana has facilitated a dialogue between developmental biologists asking how plasticity is controlled (proximate causes) and organismal biologists asking why plasticity exists (ultimate causes). Researchers studying ultimate causes and consequences are increasingly compelled to reject simplistic, ‘black box’ models, while those studying proximate causes and mechanisms are increasingly obliged to subject their interpretations to ecological ‘reality checks.’ We review the successful multidisciplinary efforts to understand the phytochrome-mediated shade-avoidance and light-seeking responses of flowering plants as a pertinent example of convergence between evolutionary and molecular biology. In this example, the two-way exchange between reductionist and holist camps has been essential to rapid and sustained progress. This should serve as a model for future collaborative efforts towards understanding the responses of organisms to their constantly changing environments.  相似文献   
5.
6.
A study was conducted in July 1989 at three stations in thenorthern Sargasso Sea, where picoplankton (<1 µm)provided approximately half of the standing crop of chlorophyll.Temporal changes in the position of the nitracline at a singlelocation indicated that the vertical supply of nitrate was notat ‘steady-state’ and phytoplankton distributionstracked the nitracline. Our main experimental objective wasto examine the short-term effects of ecologically significantnitrate perturbations (+20 and +100 nM) on the physiologyof <1 µm communities growing at low (nanomolar)ambient nitrate concentrations. A chemiluminescent nitrate methodwas used to measure the time course (up to 4 h) of nitratedisappearance at in situ irradiance, in parallel with measurementsof photosynthetic 14CO2 assimilation. Picoplankton growing at<60 nM nitrate rapidly responded to nanomolar nitratesupplements with luxury consumption and enhanced photosynthesisin proportion to their ambient nitrate environment. Light-saturatedSynechococcus populations from the most nitrate-depleted waters(13 nM) had doubled their cellular rate of photosynthesisafter 4 h, in response to a 20 nM nitrate pulse.  相似文献   
7.
Isolation and structural studies of the intact scrapie agent protein   总被引:19,自引:0,他引:19  
Purification of the scrapie agent by methods using digestion with proteinase K yields a protein product, PrP-27-30, with an apparent mass of 27-30 kDa (D. C. Bolton et al. (1982) Science 218, 1309-1311; S. B. Prusiner et al. (1982) Biochemistry 21, 6942-6950). In contrast, a 33-37 kDa glycoprotein, HaSp33-37, was the major protein component isolated from scrapie-affected hamster brain by a procedure that did not use protease digestion. The purified fractions containing HaSp33-37 had greater than 10(11) LD50 units of the scrapie agent per milligram of protein. Proteinase K digestion of HaSp33-37 gave a product indistinguishable from PrP-27-30 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. The amino acid sequence of the first 22 residues of HaSp33-37 was determined. The sequence coincided with that predicted for the N-terminus of the precursor to PrP-27-30 (K. Basler et al. (1986) Cell 46, 417-428; N. K. Robakis et al. (1986) Proc. Natl. Acad. Sci. USA 83, 6377-6381) after processing by signal protease. HaSp33-37 was digested with N alpha-tosyl-L-phenylalanine chloromethyl ketone-trypsin to produce a 29-32 kDa protein fragment; following digestion this fraction retained complete biological activity. The amino terminal sequence of the 29-32 kDa protein corresponded to a position intermediate between the amino termini of HaSp33-37 and PrP-27-30. We conclude that HaSp33-37 is the intact form of the scrapie agent protein and that PrP-27-30 is produced by proteinase K degradation when this enzyme is introduced during isolation of the scrapie agent.  相似文献   
8.
Summary A mentally retarded male was found to be homozygous for a paracentric inversion of the long arm of chromosome 12(inv(12)(q21.1q23.2)). His parents, who are first cousins, and his phenotypically normal younger brother are inversion heterozygotes. Homozygous structural rearrangements are discussed and cases of paracentric inversions, including a further nine previously unpublished, are reviewed.  相似文献   
9.
A synthetic gene coding for human interleukin 4 (IL-4) was cloned and expressed in Saccharomyces cerevisiae (baker's yeast) as a C-terminal fusion protein with the yeast prepro alpha-mating factor sequence, resulting in secretion of mature IL-4 into the culture medium (0.6-0.8 micrograms/ml). A protocol was developed for purification of this protein. Crude cell-free conditioned medium was passed over a concanavalin A-Sepharose affinity column; bound proteins were eluted and further purified by S-Sepharose Fast Flow cation exchange and C18 reverse-phase h.p.l.c. Highly purified IL-4 was obtained by this method (0.3-0.4 mg per litre of culture) with a recovery of 51%. Thermospray liquid chromatography-mass spectrometry showed the C-terminal N-glycosylation site to be largely unmodified, and also showed that the N-terminus of the purified recombinant IL-4 (rIL-4) was authentic. Thiol titration revealed no free cysteine residues, implying that there are three disulphide groups, the positions of which remain to be determined. We have characterized the biological activities of the purified rIL-4. This material is active in B-cell co-stimulator assays, T-cell proliferation assays and in the induction of cell-surface expression of CD23 (the low-affinity receptor for IgE) on tonsillar B-cells. Half-maximal biological activity of the rIL-4 was achieved at a concentration of 120 pM. We have radioiodinated rIL-4 without loss of biological activity and performed equilibrium binding studies on Raji cells, a human B-cell line. The 125I-rIL-4 bound specifically to a single class of binding studies on Raji cells, a human B-cell line. The 125I-rIL-4 bound specifically to a single class of binding site with high affinity (Kd = 100 pM) and revealed 1100 receptors per cell. Receptor-ligand cross-linking studies demonstrated a single cell-surface receptor with an apparent molecular mass of 124 kDa. Two monoclonal antibodies have been raised to the human rIL-4, one of which blocks both the biological activity of rIL-4 and binding to its receptor.  相似文献   
10.
Human placental protein 14 (PP14) has been purified in high yield from first trimester decidual cytosol. High-performance liquid chromatography on anion exchange, gel filtration and reverse-phase chromatography were used. The protein obtained is approximately 97% pure with an overall recovery of about 50% from the original tissue extract. The first 24 amino acids of the N-terminal were found to be Met-Asp-Ile-Pro-Gln-Thr-Lys-Gln-Asp-Leu-Glu-Leu-Pro-Lys-Leu-Ala-Gly-Thr-Glu-His - Glu-Met-Ala-Met. PP14 has been characterized in this study to be a dimeric glycoprotein of Mr 60,000, with homologous subunits having an Mr of 28,000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号