首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4082篇
  免费   192篇
  国内免费   1篇
  2021年   25篇
  2020年   13篇
  2019年   25篇
  2018年   41篇
  2017年   27篇
  2016年   47篇
  2015年   99篇
  2014年   96篇
  2013年   379篇
  2012年   197篇
  2011年   173篇
  2010年   131篇
  2009年   120篇
  2008年   203篇
  2007年   230篇
  2006年   238篇
  2005年   223篇
  2004年   252篇
  2003年   253篇
  2002年   208篇
  2001年   83篇
  2000年   67篇
  1999年   71篇
  1998年   59篇
  1997年   51篇
  1996年   37篇
  1995年   49篇
  1994年   50篇
  1993年   67篇
  1992年   66篇
  1991年   56篇
  1990年   43篇
  1989年   51篇
  1988年   41篇
  1987年   40篇
  1986年   26篇
  1985年   37篇
  1984年   48篇
  1983年   30篇
  1982年   40篇
  1981年   34篇
  1980年   22篇
  1979年   15篇
  1978年   27篇
  1977年   38篇
  1976年   15篇
  1975年   19篇
  1974年   21篇
  1973年   17篇
  1972年   14篇
排序方式: 共有4275条查询结果,搜索用时 46 毫秒
1.
2.
The first 12 NH2-terminal amino acids of the Pseudomonas putida putidaredoxin reductase were shown to be Met-Asn-Ala-Asn-Asp-Asn-Val-Val-Ile-Val-Gly-Thr. Comparison of these data with the DNA sequence of the BamHI-HindIII 197-base fragment derived from the PstI 2.2-kb fragment obtained from the P. putida plasmid showed that the putidaredoxin reductase gene was downstream from the cytochrome P-450 gene and the intergenic region had the 24-nucleotide sequence TAAACACATGGGAGTGCGTGCTAA. The Shine-Dalgarno sequence GGAG was detected in this region. The initiating triplet for the reductase gene was GTG, which normally codes for valine, but in the initiating codon position codes for methionine. From the amino acid sequence and X-ray data comparisons with other flavoproteins, what appears to be the AMP binding region of the FAD can be recognized in the NH2-terminal portion of the reductase involving residues 5–35.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   
3.
Cytoplasmic membranes of L-forms of Staphylococcus aureus exerted a strong mitogenic effect on splenocytes of athymic nude mice as well as normal mice, while a cytoplasmic fraction of the same bacteria did not show definite mitogenicity. The mitogenic principle(s) of the membrane fraction was resistant to treatment with trypsin and was heat stable (at 100 C for 10 min). The active principle(s) in the insoluble residue of the membrane fraction digested with trypsin was not extracted with cold acetone, but could be solubilized by extraction with a cold chloroform-methanol mixture (2:1, v/v). The mitogenic principle(s) in the extract was fractionated by silicic acid column chromatography. Among five fractions separated by chromatography, fractions eluted with chloroform-methanol mixtures (1:1 and 1:20, v/v) were found to be strongly mitogenic. The cytoplasmic membranes of the L-forms also exerted a definite mitogenic effect on guinea pig splenocytes, but not on the thymocytes.  相似文献   
4.
S Kitahata  S Chiba  C F Brewer  E J Hehre 《Biochemistry》1991,30(27):6769-6775
Crystalline (monomeric) soybean and (tetrameric) sweet potato beta-amylase were shown to catalyze the cis hydration of maltal (alpha-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form beta-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D2O by soybean beta-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (VH/VD = 6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-[2(a)-2H]maltose as product. These results indicate (for each beta-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. This is a different stereochemistry than reported for starch hydrolysis. With the hydration catalyzed in H2O and analyzed by gas-liquid chromatography, both sweet potato and soybean beta-amylase were found to convert maltal to the beta-anomer of 2-deoxymaltose. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that beta-amylase protonates maltal from a direction opposite that assumed for protonating starch, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures in dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center.  相似文献   
5.
6.
Summary I study the evolutionarily stable seasonal patterns of hatching and pupation for herbivorous insects that engage in exploitative competition for a renewable resource. A longer larval feeding period enhances female fecundity, but also causes a higher mortality by predation and parasitism. Previously, it was shown that the evolutionarily stable population exhibits asynchronous starting and ending of the larval feeding period in a model in which larval growth rate decreases with the total larval biomass in the population due presumably to interference competition. Here I study the case in which resource availability changes not only with environmental seasonality but with the depletion by the feeding of larvae. I find that if the impact of the herbivory is strong, both hatching and pupation should occur asynchronously in the evolutionarily stable population. And if the favourable season for the host plant is short the ESS population may include synchronous timing of pupation. If the timing of hatching and pupation occurs asynchronously, in the first day of each interval some fraction of the population hatch or pupate, respectively and the rest do so gradually over the interval. In addition, if the environmental variable changes as a symmetric function of time, the length of the period in which hatching occurs tends to be much shorter than the period in which pupation occurs.  相似文献   
7.
8.
Summary Isobutene production by Rhodotorula minuta IFO 1102 was studied. It was confirmed that the gas species produced by this yeast was isobutene from the result of analysis with a gas chromatograph mass spectrometer. Oxygen supply was essential to the microbial production of isobutene. The optimum pH was found to be approximately pH 6.0 and optimum temperature 25°–27° C. Isobutene production rate was maximal when l-leucine and l-phenylalanine in the medium were being uptaken by the yeast.The results from an investigation of the role of l-leucine and l-phenylalanine suggested that l-leucine was the precursor of isobutene and l-phenylalanine the inducer for the enzyme concerned with isobutene production.  相似文献   
9.
The inhibition of yeast (Saccharomyces cerevesiae) metabolism by fungicidal chemicals was investigated. Glucose- or ethanol-dependent yeast respiration was measured with an oxygen electrode, and manometric determination of carbon dioxide release was used to measure fermentation. Both respiration and fermentation were inhibited more by benomyl than by identical molar concentrations of its breakdown product, carbendazim. Butyl isocyanate, another benomyl breakdown product, inhibited respiration more but inhibited fermentation less than the parent compound. Of the isocyanates tested, hexyl isocyanate was the most inhibitory towards both activities. Captan was more active and iprodione less active than benomyl. Because benomyl rapidly broke down to carbendazim when it was prepared in 80% ethanol, only 59% of the dissolved benomyl was intact when it was added to yeast to determine its effect on respiration or fermentation.  相似文献   
10.
The bacterial protein staphylocoagulase binds stoichiometrically to human prothrombin, resulting in a coagulant complex, staphylothrombin. The enzymatic properties of staphylothrombin differ from those of -thrombin in their substrate specificities toward natural and synthetic substrates, in addition to their interaction with protease inhibitors. In order to obtain information about the region of staphylocoagulase that interacts with human prothrombin, staphylocoagulase was cleaved by -chymotrypsin. Limited -chymotryptic cleavage of staphylocoagulase yielded three large fragments, of 43, 30, and 20 kD. The 43-kD fragment exhibited a high affinity for human prothrombin (Kd=1.7 nM), which is comparable to the affinity observed using intact staphylocoagulase (Kd=0.46 nM). A complex of the 43-kD fragment and prothrombin possessed both clotting and amidase activity essentially identical to that observed in a complex of intact staphylocoagulase and prothrombin. The 30-kD fragment exhibited weaker affinity for prothrombin (Kd=120 nM.) While clotting activity was not observed with a complex of this fragment and prothrombin, it nonetheless possessed a weak amidase activity. The 20-kD fragment was found only to bind to prothrombin. The NH2-terminal sequence analyses of these fragments revealed that the 43-kD fragment constitutes the NH2-terminal portion of staphylocoagulase, and contains the 30-kD and 20-kD fragments. It is therefore concluded that the functional region of staphylocoagulase for binding and activation of prothrombin is localized in the NH2-terminal region of the intact protein. The 43-kD fragment contained 324 amino acids with a molecular weight of 38,098. The 43-kD fragment had an unusual amino acid composition based on a sequence in which the sum of Asp (28 residues), Asn (22), Glu (35), Gln (9), and Lys (52) residues accounted for more than 45% of the total. A comparison of the amino acid sequence of the 43-kD fragment with that of streptokinase did not reveal any obvious sequence homology. There was also no sequence homology with that of trypsin, -chymotrypsin, and elastase.This article was presented during the proceedings of the International Conference on Macromolecular Structure and Function, held at the National Defence Medical College, Tokorozawa, Japan, December 1985.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号