首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   644篇
  免费   60篇
  2021年   4篇
  2020年   6篇
  2018年   6篇
  2017年   6篇
  2016年   12篇
  2015年   26篇
  2014年   27篇
  2013年   37篇
  2012年   29篇
  2011年   41篇
  2010年   33篇
  2009年   34篇
  2008年   29篇
  2007年   31篇
  2006年   20篇
  2005年   23篇
  2004年   25篇
  2003年   20篇
  2002年   17篇
  2001年   18篇
  2000年   11篇
  1999年   10篇
  1998年   12篇
  1997年   14篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   8篇
  1988年   12篇
  1987年   5篇
  1986年   5篇
  1985年   9篇
  1984年   9篇
  1983年   6篇
  1982年   17篇
  1981年   5篇
  1979年   6篇
  1978年   7篇
  1977年   10篇
  1976年   8篇
  1975年   9篇
  1974年   6篇
  1972年   4篇
  1971年   5篇
  1968年   7篇
  1966年   4篇
排序方式: 共有704条查询结果,搜索用时 640 毫秒
1.
The inner membrane TET (TetA) protein, which is involved in Tn10-mediated microbial tetracycline resistance, consists of two domains, alpha and beta, both of which are needed for tetracycline resistance and efflux (M.S. Curiale, L.M. McMurry, and S.B. Levy, J. Bacteriol. 157:211-217, 1984). Since tetracycline-sensitive mutants in one domain can partially complement sensitive mutants in the other domain and since some sensitive mutants show dominance over the wild type, a multimeric structure for TET in the membrane had been suggested. We have studied this possibility by using tetA-phoA gene fusions. We fused all but the last 40 base pairs of the tetA gene with the carboxy terminus of the phoA gene for alkaline phosphatase (PhoA), whose activity requires its dimerization in the periplasm. The tetA-phoA fusion protein was under control of the tetracycline-inducible regulatory system for the tetA gene. Induction led to the synthesis of a 78,000-dalton inner membrane protein. Tetracycline resistance was expressed at reduced levels, consistent with the terminal beta domain deletion. Alkaline phosphatase activity was also present, but at low levels, suggesting that some, but not all, of the fusion proteins had their carboxy-terminal ends in the periplasm. When wild-type or mutant TET proteins were present in the same cell with the fusion protein, the tetracycline resistance level was affected (raised or lowered); however, phosphatase activity was reduced only when TET proteins with intact or near-intact beta domains were present. These findings suggest that TET functions as a multimer and that intact beta domains, on TET molecules in the heterologous multimer, either allow fewer PhoA moieties to project into the periplasm or sterically hinder PhoA moieties from dimerizing.  相似文献   
2.
The structures of alpha 1,2-mannose containing partially processed asparagine-linked oligosaccharides on the alpha-chain of MOPC 315 IgA were characterized using specific glycosidases and acetolysis. Man6GlcNAc2, a substrate for a Golgi alpha 1,2-mannosidase, was found to be a single isomeric structure. Likewise, Man7-9GlcNAc2 were single isomers indicating an ordered sequence of removal of alpha 1,2-linked mannose residues on this murine immunoglobulin heavy chain.  相似文献   
3.
4.
5.
6.
The morphology of rabbit heart muscle mitochondria isolated in several media has been compared by electron microscopy. The internal structure of isolated mitochondria differs from that of in situ mitochondria, with the type and degree of alteration depending on the isolation medium. Examination of the isolated mitochondria after incubation revealed that additional morphological changes occurred during incubation, but these changes were less pronounced when the incubation was conducted in a complete medium containing substrate. The isolated mitochondria have been shown to be capable of catalyzing a slow aerobic oxidation of extramitochondrial reduced diphosphopyridine nucleotide. The rate of DPNH oxidation observed is sufficient to account for the ability of the mitochondria to oxidize lactate in the presence of catalytic amounts of DPNH. The suspensions used were essentially free of mitochondrial fragments, which are known to oxidize DPNH. Possible relationships of these findings to metabolism in situ are discussed. The results indicate the desirability of correlating biochemical activities with the morphology of isolated mitochondria.  相似文献   
7.
8.
Adenosine 5'-phosphosulfate (APS) kinase (ATP:APS 3'-phosphotransferase) catalyzes the ultimate step in the biosynthesis of 3'-phosphoadenosine 5'-phosphosulfate (PAPS), the primary biological sulfuryl donor. APS kinase from Escherichia coli is phosphorylated upon incubation with ATP, yielding a protein that can complete the overall reaction through phosphorylation of APS. Rapid-quench kinetic experiments show that, in the absence of APS, ATP phosphorylates the enzyme with a rate constant of 46 s-1, which is equivalent to the Vmax for the overall APS kinase reaction. Similar pre-steady-state kinetic measurements show that the rate constant for transfer of the phosphoryl group from E-P to APS is 91 s-1. Thus, the phosphorylated enzyme is kinetically competent to be on the reaction path. In order to elucidate which amino acid residue is phosphorylated, and thus to define the active site region of APS kinase, we have determined the complete sequence of cysC, the structural gene for this enzyme in E. coli. The coding region contains 603 nucleotides and encodes a protein of 22,321 Da. Near the amino terminus is the sequence 35GLSGSGKS, which exemplifies a motif known to interact with the beta-phosphoryl group of purine nucleotides. The residue that is phosphorylated upon incubation with ATP has been identified as serine-109 on the basis of the amino acid composition of a radiolabeled peptide purified from a proteolytic digest of 32P-labeled enzyme. We have identified a sequence beginning at residue 147 which may reflect a PAPS binding site. This sequence was identified in the carboxy terminal region of 10 reported sequences of proteins of PAPS metabolism.  相似文献   
9.
The phylogeny of Greya Busck (Lepidoptera: Prodoxidae) was inferred from nucleotide sequence variation across a 765-bp region in the cytochrome oxidase I and II genes of the mitochondrial genome. Most parsimonious relationships of 25 haplotypes from 16 Greya species and two outgroup genera (Tetragma and Prodoxus) showed substantial congruence with the species relationships indicated by morphological variation. Differences between mitochondrial and morphological trees were found primarily in the positions of two species, G. variabilis and G. pectinifera, and in the branching order of the three major species groups in the genus. Conflicts between the data sets were examined by comparing levels of homoplasy in characters supporting alternative hypotheses. The phylogeny of Greya species suggests that host-plant association at the family level and larval feeding mode are conservative characters. Transition/transversion ratios estimated by reconstruction of nucleotide substitutions on the phylogeny had a range of 2.0-9.3, when different subsets of the phylogeny were used. The decline of this ratio with the increase in maximum sequence divergence among taxa indicates that transitions are masked by transversions along deeper internodes or long branches of the phylogeny. Among transitions, substitutions of A-->G and T-->C outnumbered their reciprocal substitutions by 2-6 times, presumably because of the approximately 4:1 (77%) A+T-bias in nucleotide base composition. Of all transversions, 73%-80% were A<-->T substitutions, 85% of which occurred at third positions of codons; these estimates did not decrease with an increase in maximum sequence divergence of taxa included in the analysis. The high frequency of A<-->T substitutions is either a reflection or an explanation of the 92% A+T bias at third codon positions.   相似文献   
10.
Prey may experience ontogenetic changes in vulnerability to some predators, either because of changes in morphology or experience. If prey match their level of antipredator behavior to the level of predatory threat, prey responses to predators should reflect the appropriate level of threat for their stage of development. For larval salamanders, responses to predators may change with body size because larger larvae are less vulnerable to predation by gape‐limited predators or because fleeing responses by large salamanders may be more effective than for smaller salamanders. In a field experiment, small larval ringed salamanders, Ambystoma annulatum, responded to chemical stimuli (‘kairomones’) from predatory newts, Notophthalmus viridescens, with an antipredator response (decreased activity). Laboratory‐reared larvae decreased their activity following exposure to newt kairomones, indicating that larval ringed salamanders do not require experience with newts to recognize them as predators. In both experiments, larvae distinguished between chemical stimuli from newts and stimuli from tadpoles (non‐predators) and a blank control. In a third experiment, field‐caught (experienced) larvae showed a graded response to newt kairomones based on their body size: small larvae tended to decrease their activity while larger larvae showed no change or an increase in activity. This graded response was not observed for neutral stimuli, indicating that it is predator‐specific. Therefore, ringed salamander larvae exhibit threat‐sensitive ontogenetic changes in their response to chemical stimuli from predatory newts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号