首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   3篇
  2019年   1篇
  2012年   2篇
  2011年   1篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Biological Trace Element Research - The analytical method used for the determination of traces of platinum and gold in different tissues of Wistar rats is based on neutron activation analysis with...  相似文献   
2.
3.
Young rats (21 days old) made nutritionally iron deficient, by feeding them a semisynthetic diet containing skimmed milk for 5 weeks, had significantly lowered hemoglobin levels (5.2 +/- 4 g/100 ml). The nonheme iron content in caudate nucleus was decreased by 47%. The behavioral response of iron-deficient rats to apomorphine (2 mg/kg) and the density of 3,4-dihydroxyphenylethylamine (dopamine) D2 receptors, as measured by [3H]spiperone binding in caudate nucleus, were significantly reduced by 70 and 53%, respectively. The possibility that nutritional iron deficiency may affect protein content in brain was investigated by measuring the apparent concentration of proteins in caudate nucleus and nucleus accumbens from iron-deficient and control animals using two-dimensional gel electrophoresis. The data indicate that iron deficiency can affect content in these two brain regions. Significant changes in the content of 10 proteins were noted in the caudate nucleus and nucleus accumbens in iron-deficient rats. The albumin level was significantly increased in both regions studied, whereas the neuron-specific enolase level was increased in the nucleus accumbens and the glial fibrillary acidic protein level was reduced in the caudate nucleus. The significance of these protein content changes, as well as a reduction in content of a 94-kilodalton protein (a molecular size similar to that of the D2 dopamine receptor), remains to be established.  相似文献   
4.
5.
The pest Plodia interpunctella (Hübner) is reared in many research laboratories. In a culture established in 1996, attraction of males to the female‐produced sex pheromone in flight tunnel assays gradually decreased after ≈15 years of rearing. A new culture was established to enable comparison with the old culture regarding traits associated with mate finding. Female calling activity, pheromone titre and male antennal response to pheromone components did not differ between cultures. In contrast, very few males from the old culture reached the pheromone source in flight tunnel assays compared with 61%–81% of males from the other culture. Our results highlight the importance of maintaining viable insect cultures for research purposes and suggest frequent evaluation of traits involved in chemical communication in such cultures to ensure reliable results in experiments.  相似文献   
6.
Siberian hamsters undergo torpor during the short days of winter and in response to glucoprivation or food restriction. We tested whether the area postrema and the adjacent nucleus of the solitary tract (hereafter the AP), which monitor metabolic fuel availability, also control the onset of torpor. Siberian hamsters that had manifested torpor spontaneously or had entered torpor in response to 2-deoxy-D-glucose (2-DG) treatment were subjected to area postrema ablations (APx). Hamsters continued to display torpor postoperatively; most features of torpor were unaffected by APx. The AP is not necessary for expression of torpor elicited by short day lengths or metabolic challenge. In contrast, decreases in food intake manifested by hamsters treated with 2-DG were counteracted by APx. In Siberian hamsters, the AP appears to mediate effects of 2-DG on food intake but not torpor.  相似文献   
7.
8.
9.
Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary for P. aeruginosa initial attachment or biofilm formation, but the cell appendages had roles in biofilm development, as wild type, flagella and type IV pili mutants formed biofilms with different structures. Dynamics and selection during biofilm formation were investigated by tagging the wild type and flagella/type IV mutants with Yfp and Cfp and performing time-lapse confocal laser scanning microscopy in mixed colour biofilms. The initial microcolony formation occurred by clonal growth, after which wild-type P. aeruginosa bacteria spread over the substratum by means of twitching motility. The wild-type biofilms were dynamic compositions with extensive motility, competition and selection occurring during development. Bacterial migration prevented the formation of larger microcolonial structures in the wild-type biofilms. The results are discussed in relation to the current model for P. aeruginosa biofilm development.  相似文献   
10.
Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (<5.5) were detected at specific locations along the surface of attachment. Resistance to chlorhexidine was enhanced in cells within EPS-microcolony complexes compared to those outside such structures within the biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These observations may have relevance beyond the mouth, as matrix is inherent to all biofilms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号