首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   2篇
  2018年   1篇
  2017年   1篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2008年   3篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1995年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules.  相似文献   
2.
3.
The work was focused on the investigation of possible dependencies between the development of viral infection in plants and the presence of high heavy metal concentrations in soil. Field experiments have been conducted in order to study the development of systemic tobacco mosaic virus (TMV) infection in Lycopersicon esculentum L. cv. Miliana plants under effect of separate salts of heavy metals Cu, Zn and Pb deposited in soil. As it is shown, simultaneous effect of viral infection and heavy metals in tenfold maximum permissible concentration leads to decrease of total chlorophyll content in experiment plants mainly due to the degradation of chlorophyll a. The reduction of chlorophyll concentration under the combined influence of both stress factors was more serious comparing to the separate effect of every single factor. Plants' treatment with toxic concentrations of lead and zinc leaded to slight delay in the development of systemic TMV infection together with more than twofold increase of virus content in plants that may be an evidence of synergism between these heavy metal's and virus' effects. Contrary, copper although decreased total chlorophyll content but showed protective properties and significantly reduced amount of virus in plants.  相似文献   
4.
Chronic inflammation in obese adipose tissue is linked to endoplasmic reticulum (ER) stress and systemic insulin resistance. Targeted deletion of the murine fatty acid binding protein (FABP4/aP2) uncouples obesity from inflammation although the mechanism underlying this finding has remained enigmatic. Here, we show that inhibition or deletion of FABP4/aP2 in macrophages results in increased intracellular free fatty acids (FFAs) and elevated expression of uncoupling protein 2 (UCP2) without concomitant increases in UCP1 or UCP3. Silencing of UCP2 mRNA in FABP4/aP2-deficient macrophages negated the protective effect of FABP loss and increased ER stress in response to palmitate or lipopolysaccharide (LPS). Pharmacologic inhibition of FABP4/aP2 with the FABP inhibitor HTS01037 also upregulated UCP2 and reduced expression of BiP, CHOP, and XBP-1s. Expression of native FABP4/aP2 (but not the non-fatty acid binding mutant R126Q) into FABP4/aP2 null cells reduced UCP2 expression, suggesting that the FABP-FFA equilibrium controls UCP2 expression. FABP4/aP2-deficient macrophages are resistant to LPS-induced mitochondrial dysfunction and exhibit decreased mitochondrial protein carbonylation and UCP2-dependent reduction in intracellular reactive oxygen species. These data demonstrate that FABP4/aP2 directly regulates intracellular FFA levels and indirectly controls macrophage inflammation and ER stress by regulating the expression of UCP2.  相似文献   
5.
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in decreased fat mass, increased lipolysis, and potentiated insulin resistance. To identify the mechanisms that underlie these processes, real-time PCR analyses indicate that the expression of hormone-sensitive lipase is reduced, while perilipin A is increased in A-FABP/aP2 null mice relative to E-FABP overexpressing mice. In contrast, de novo lipogenesis and expression of genes encoding lipoprotein lipase, CD36, long-chain acyl-CoA synthetase 5, and diacylglycerol acyltransferase are increased in A-FABP/aP2 null mice relative to E-FABP transgenic animals. Consistent with an increase in de novo lipogenesis, there was an increase in adipose C16:0 and C16:1 acyl-CoA pools. There were no changes in serum free fatty acids between genotypes. Serum levels of resistin were decreased in the E-FABP transgenic mice, whereas serum and tissue adiponectin were increased in A-FABP/aP2 null mice and decreased in E-FABP transgenic animals; leptin expression was unaffected. These results suggest that the balance between lipolysis and lipogenesis in adipocytes is remodeled in the FABP null and transgenic mice and is accompanied by the reprogramming of adipokine expression in fat cells and overall changes in plasma adipokines.  相似文献   
6.
The single most difficult problem in phylogenetic analysis is deciding whether a shared taxonomic character is due to common ancestry or one that appeared independently due to convergence, parallelism, or reversion to an ancestral state. Mammalian L1 retrotransposons undergo periodic amplifications in which multiple copies of the elements are interspersed in the genome. Because these elements apparently are transmitted only by inheritance and are retained in the genome, a shared L1 amplification event can only be an inherited ancestral character. We propose that L1 amplification events can be an excellent tool for analyzing mammalian evolution and demonstrate here how we addressed several refractory problems in rodent systematics using L1 DNA as a taxonomic character.   相似文献   
7.
Inflammatory bowel diseases (IBD) are emerging globally, indicating that environmental factors may be important in their pathogenesis. Colonic mucosal epigenetic changes, such as DNA methylation, can occur in response to the environment and have been implicated in IBD pathology. However, mucosal DNA methylation has not been examined in treatment-naïve patients. We studied DNA methylation in untreated, left sided colonic biopsy specimens using the Infinium HumanMethylation450 BeadChip array. We analyzed 22 control (C) patients, 15 untreated Crohn’s disease (CD) patients, and 9 untreated ulcerative colitis (UC) patients from two cohorts. Samples obtained at the time of clinical remission from two of the treatment-naïve UC patients were also included into the analysis. UC-specific gene expression was interrogated in a subset of adjacent samples (5 C and 5 UC) using the Affymetrix GeneChip PrimeView Human Gene Expression Arrays. Only treatment-naïve UC separated from control. One-hundred-and-twenty genes with significant expression change in UC (> 2-fold, P < 0.05) were associated with differentially methylated regions (DMRs). Epigenetically associated gene expression changes (including gene expression changes in the IFITM1, ITGB2, S100A9, SLPI, SAA1, and STAT3 genes) were linked to colonic mucosal immune and defense responses. These findings underscore the relationship between epigenetic changes and inflammation in pediatric treatment-naïve UC and may have potential etiologic, diagnostic, and therapeutic relevance for IBD.  相似文献   
8.

Background

Epidemiological studies have demonstrated a relationship between cognitive function in youth and the future risk of death. Less is known regarding the relationship with diabetes related death. This study assessed the relationship between cognitive function in late adolescence and the risk for diabetes, cardiovascular- (CVD) and all-cause mortality in adulthood.

Methods

This retrospective study linked data from 2,277,188 16–19 year olds who had general intelligence tests (GIT) conducted during pre-military recruitment assessment with cause of death as coded by the Israel Central Bureau of Statistics. The associations between cognitive function and cause-specific mortality were assessed using Cox models.

Results

There were 31,268 deaths that were recorded during 41,916,603 person-years of follow-up, with a median follow-up of 19.2 (IQR 10.7, 29.5) years. 3068, 1443, 514 and 457 deaths were attributed to CVD, CHD, stroke, and diabetes, respectively. Individuals in the lowest GIT vs. highest GIT quintiles in unadjusted models had the highest risk for all-cause mortality (HR 1.84, 95% CI 1.78, 1.91), total CVD (HR 3.32, 95% CI 2.93, 3.75), CHD (HR 3.49 95% CI 2.92, 4.18), stroke (HR 3.96 95% CI 2.85, 5.5) and diabetes-related (HR 6.96 95% CI 4.68, 10.36) mortality. These HRs were attenuated following adjustment for age, sex, birth year, body-mass index, residential socioeconomic status, education and country of origin for all-cause (HR 1.23, 95% CI 1.17, 1.28), CVD (HR 1.76, 95% CI 1.52, 2.04), CHD (HR 1.7 95% CI 1.37, 2.11), stroke (HR 2.03, 95% CI 1.39, 2.98) and diabetes-related (HR 3.14 95% CI 2.00, 4.94) mortality. Results persisted in a sensitivity analyses limited to participants with unimpaired health at baseline and that accounted competing risk.

Conclusions

This analysis of over 2 million demonstrates a strong relationship between cognitive function at youth and the risk for diabetes, all-cause and CVD-related mortality independent of adolescent obesity.
  相似文献   
9.
4-Hydroxynonenal (4-HNE) is a cytotoxic alpha,beta-unsaturated acyl aldehyde that is naturally produced from lipid peroxidation and cleavage in response to oxidative stress and aging. Such reactive lipids covalently modify cellular target proteins, thereby affecting biological structure and function. Herein we report the identification of the epithelial fatty acid-binding protein (E-FABP) as a molecular target for 4-HNE modification both in vitro and in vivo. 4-HNE covalently modified (t(12) < 60 s) E-FABP in vitro, as revealed by a combination of matrix-assisted laser desorption ionization-time of flight mass spectrometry and immunochemical reactivity using antibodies directed to 4-HNE-protein conjugates. Identification of Cys-120 as the major site of modification was determined through tandem mass spectral sequencing of tryptic peptides, as well as analysis of E-FABP mutants C120A, C127A, and C120A/C127A. The in vitro modification of Cys-120 by 4-HNE was relatively insensitive to pH (6.4-8.4), and temperature (4-37 degrees C) but was markedly potentiated by noncovalently bound fatty acids. 4-HNE-modified E-FABP was more stable than unmodified E-FABP to chemical denaturation by guanidine hydrochloride, as assessed by changes in intrinsic tryptophan fluorescence. Analysis of soluble protein extracts from rat retina with antibodies directed to 4-HNE-protein conjugates revealed immunoreactivity with a 15-kDa protein that was identified by electrospray ionization and matrix-assisted laser desorption ionization-time of flight mass spectrometry as E-FABP. Evaluation of retinal pigment epithelial cell extracts derived from E-FABP null mice by two-dimensional gel electrophoresis using anti-4-HNE antibodies revealed increased modification in the null cells relative to those from wild type cells. These results indicate that E-FABP is a molecular target for 4-HNE modification and the hypothesis that E-FABP functions as an antioxidant protein by scavenging reactive lipids through covalent modification of Cys-120.  相似文献   
10.
Following the publication of the last of the series of Flora Europaea Notulae, No. 20 in the Botanical Journal of the Linnean Society , 76: 297–384 (1978), a number of additions or alterations have been drawn to our attention. These are published in continuation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号