首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
  2019年   1篇
  2015年   2篇
  2013年   3篇
  2012年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1983年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Drought responses of diurnal gas exchange, malic acid accumulation and water status were examined in Delosperma tradescantioides , a succulent that grows in drought-prone microenvironments in summer rainfall and all-year rainfall regions of southern Africa. When well-watered, this species exhibited Crassulacean acid metabolism (CAM)-cycling, but its carbon fixation pattern changed during the development of drought, shifting to either low-level CAM or to CAM-idling. The rate and pattern of this change depended on environmental conditions, duration of water stress and leaf age. At the onset of drought, diurnal malate fluctuation increased, but was strongly depressed (by ca 70%) as drought continued, and when leaf water content and water potential were low (ca 35 and 50% of the initial levels, respectively). When rewatered, rates of growth and photosynthesis, gas exchange and water status recovered fully to pre-stressed values within two days. Whole-shoot carbon uptake rates suggested that leaf growth had continued unabated during a short-term (∼ one week) drought. This emphasises that CAM-idling allows the maintenance of active metabolism with negligible gas exchange when soil water is limiting. It is possible that old or senescent leaves may provide water for the expansion of developing leaves during initial periods of drought. Regardless of the water regime and environmental conditions, leaf nocturnal malate accumulation and water content were positively correlated and increased with leaf age. Thus the gradual loss of water from older mature leaves may induce CAM-idling, which reduces water loss. An important ecological consequence of this combination of CAM modes is the potential to switch rapidly between fast growth via C3 gas exchanges when well-watered to water-conserving CAM-idling during drought.  相似文献   
2.
It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues.  相似文献   
3.
Most epiphytic bromeliads, especially those in the genus Tillandsia, lack functional roots and rely on the absorption of water and nutrients by large, multicellular trichomes on the epidermal surfaces of leaves and stems. Another important function of these structures is the spread of water over the epidermal surface by capillary action between trichome “wings” and epidermal surface. Although critical for the ultimate absorption by these plants, understanding of this function of trichomes is primarily based on light microscope observations. To better understand this phenomenon, the distribution of water was followed by its attenuation of cold neutrons following application of H2O to the cut end of Tillandsia usneoides shoots. Experiments confirmed the spread of added water on the external surfaces of this “atmospheric” epiphyte. In a morphologically and physiologically similar plant lacking epidermal trichomes, water added to the cut end of a shoot clearly moved via its internal xylem and not on its epidermis. Thus, in T. usneoides, water moves primarily by capillarity among the overlapping trichomes forming a dense indumentum on shoot surfaces, while internal vascular water movement is less likely. T. usneoides, occupying xeric microhabitats, benefits from reduction of water losses by low‐shoot xylem hydraulic conductivities.  相似文献   
4.
Osteoarthritis (OA) is a common joint disease, mainly effecting the elderly population. The cause of OA seems to be an imbalance in catabolic and anabolic factors that develops with age. IL-1 is a catabolic factor known to induce cartilage damage, and transforming growth factor (TGF)-beta is an anabolic factor that can counteract many IL-1-induced effects. In old mice, we observed reduced responsiveness to TGF-beta-induced IL-1 counteraction. We investigated whether expression of TGF-beta and its signaling molecules altered with age. To mimic the TGF-beta deprived conditions in aged mice, we assessed the functional consequence of TGF-beta blocking. We isolated knee joints of mice aged 5 months or 2 years, half of which were exposed to IL-1 by intra-articular injection 24 h prior to knee joint isolation. Immunohistochemistry was performed, staining for TGF-beta1, -2 or -3, TGF-betaRI or -RII, Smad2, -3, -4, -6 and -7 and Smad-2P. The percentage of cells staining positive was determined in tibial cartilage. To mimic the lack of TGF-beta signaling in old mice, young mice were injected with IL-1 and after 2 days Ad-LAP (TGF-beta inhibitor) or a control virus were injected. Proteoglycan (PG) synthesis (35S-sulfate incorporation) and PG content of the cartilage were determined. Our experiments revealed that TGF-beta2 and -3 expression decreased with age, as did the TGF-beta receptors. Although the number of cells positive for the Smad proteins was not altered, the number of cells expressing Smad2P strongly dropped in old mice. IL-1 did not alter the expression patterns. We mimicked the lack of TGF-beta signaling in old mice by TGF-beta inhibition with LAP. This resulted in a reduced level of PG synthesis and aggravation of PG depletion. The limited response of old mice to TGF-beta induced-IL-1 counteraction is not due to a diminished level of intracellular signaling molecules or an upregulation of intracellular inhibitors, but is likely due to an intrinsic absence of sufficient TGF-beta receptor expression. Blocking TGF-beta distorted the natural repair response after IL-1 injection. In conclusion, TGF-beta appears to play an important role in repair of cartilage and a lack of TGF-beta responsiveness in old mice might be at the root of OA development.  相似文献   
5.
6.
7.
Sperm chromatin integrity is essential for accurate transmission of male genetic information, and normal sperm chromatin structure is important for fertilization. Protamine is a nuclear protein that plays a key role in sperm DNA integrity, because it is responsible for sperm DNA stability and packing until the paternal genome is delivered into the oocyte during fertilization. Our aim was to investigate protamine deficiency in sperm cells of Bos indicus bulls (Nelore) using chromomycin A3 (CMA3) staining. Frozen semen from 14 bulls were thawed, then fixed in Carnoy's solution. Smears were prepared and analyzed by microscopy. As a positive control of CMA3 staining, sperm from one bull was subjected to deprotamination of nuclei. The percentage of CMA3-positive bovine sperm did not vary among batches. Only two bulls showed a higher percentage of CMA3-positive sperm cells compared to the others. CMA3 is a simple and useful tool for detecting sperm protamine deficiency in bulls.  相似文献   
8.
The effects of temperature on the dynamics of changes in shoot mechanical properties, cell wall components, relevant soluble sugars and respiration activity of harvested white asparagus spears were investigated during a 7-day storage period. All functional cell wall components of asparagus spears increased closely temperature dependent. The content of soluble glucose declined with a similar temporal dynamics and to a comparable degree, indicating a major carbon flow of this storage sugar into cell walls (60–70%). Irrespective of temperature, the contents of stored soluble fructose and sucrose remained more or less constant. Lower temperatures reduced cell wall development but do not significantly affect the relative carbon flow from storage sugars into cell walls or maintenance respiration. Compared with cell walls, maintenance respiration is by far the smaller carbon sink in stored asparagus spears. Temperature differentially affects the absolute amount and the relative contribution of the different cell wall components and the temporal dynamics of changes in structural carbohydrate and lignin content. At higher temperatures, secondary cell wall thickening resulted mainly from a large increase in cellulose content. The pronounced increase in the fractions of cellulose and especially lignin may stress the important role of lignin in cell wall strengthening. While the fraction of cell wall proteins decreased, those of hemicellulose and the pectic components were not influenced.  相似文献   
9.
Protea acaulos, a prostrate fynbos shrub, often experiences very low air humidity at leaf temperatures over 10°C higher than mean air temperature. We determined to what degree this particular microclimate influenced photosynthetic performance, leaf conductance and water relations of non-irrigated and trickle-irrigated plants. Measurements were made at the end of the dry summer season in the sand plain lowland fynbos on the west coast of South Africa. Independent of water supply, plants showed a pronounced midday depression of gas exchange. While in non-irrigated plants leaf water potential dropped to ? 2.0 MPa around noon, it never fell below ?1.0 MPa in irrigated plants. On the other hand minimum pressure potential was similar in irrigated and non-irrigated plants. The latter showed higher turgor after rain, due to osmotic acclimation, which resulted from a reduction in maximum water volume. The main osmoticum was 1,5-anhydro-D-glucitol. Leaf temperature, directly or via the vapour pressure deficit between leaf and air (Δw), rather than plant water status, was the determinant of the midday depression of gas exchange. High Δw caused stomatal closure during times of saturating light, thus limiting photosynthetic CO2 uptake and availability and enhancing the susceptibility for photoinhibition. This, as well as high leaf temperature per se, decreased the efficiency of photochemistry of photosystem II. Initial fluorescence remained constant until temperatures exceeded 35 °C, above which changes in fluorescence indicated both photoinhibition and heat stress. Unlike other fynbos plants, Protea acaulos could not use the improved soil water supply to increase carbon gain under hot summer condition.  相似文献   
10.

Background

Rhizobium leguminosarum is an α-proteobacterial N2-fixing symbiont of legumes that has been the subject of more than a thousand publications. Genes for the symbiotic interaction with plants are well studied, but the adaptations that allow survival and growth in the soil environment are poorly understood. We have sequenced the genome of R. leguminosarum biovar viciae strain 3841.

Results

The 7.75 Mb genome comprises a circular chromosome and six circular plasmids, with 61% G+C overall. All three rRNA operons and 52 tRNA genes are on the chromosome; essential protein-encoding genes are largely chromosomal, but most functional classes occur on plasmids as well. Of the 7,263 protein-encoding genes, 2,056 had orthologs in each of three related genomes (Agrobacterium tumefaciens, Sinorhizobium meliloti, and Mesorhizobium loti), and these genes were over-represented in the chromosome and had above average G+C. Most supported the rRNA-based phylogeny, confirming A. tumefaciens to be the closest among these relatives, but 347 genes were incompatible with this phylogeny; these were scattered throughout the genome but were over-represented on the plasmids. An unexpectedly large number of genes were shared by all three rhizobia but were missing from A. tumefaciens.

Conclusion

Overall, the genome can be considered to have two main components: a 'core', which is higher in G+C, is mostly chromosomal, is shared with related organisms, and has a consistent phylogeny; and an 'accessory' component, which is sporadic in distribution, lower in G+C, and located on the plasmids and chromosomal islands. The accessory genome has a different nucleotide composition from the core despite a long history of coexistence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号