首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1995年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
We report herein the novel observation that alterations in oxidant/antioxidant balance are evident and cause vascular dysfunction in aortae of prediabetic nonobese-diabetic mice (NOD). We found that nitrotyrosine, a biochemical marker of oxidant stress, was higher in the NOD aortae when compared to age-matched non-autoimmune BALB/c controls or the diabetes-resistant NOD congenic strain, NOD.Lc7. The oxidant stress was localized to the intimal and medial layers, and endothelium-dependent relaxation to acetylcholine was decreased in isolated aortic rings from NOD mice. Inhibition of nitric oxide synthesis caused an endothelium-dependent contraction, and treatment with either a selective thromboxane A2/prostaglandin H2 receptor antagonist or a non-isozyme-specific cyclooxygenase inhibitor reversed this effect. Aortic rings from NOD.Lc7 did not display the paradoxical vasoconstriction. Furthermore, the vascular dysfunction was caused by oxidative stress, as treatment with a superoxide dismutase mimetic in vivo or with native antioxidant enzymes ex vivo inhibited the tissue oxidant stress and restored endothelium-dependent relaxation. Endothelial function was also restored by the inhibitors of NAD(P)H oxidase, diphenylene iodonium or apocynin. Our studies indicate that an oxidant stress that occurs prior to the onset of diabetes in this mouse model contributes to endothelial dysfunction independently of overt diabetes.  相似文献   
2.
Osmotic adjustment in marine yeast   总被引:1,自引:0,他引:1  
The effect of environmental salinity on cell growth, and onthe composition and accumulation of compatible solutes, or osmotica,of five yeast strains (Aureobasidium pullulans, Candida sp.,Cryptococcus albidus var. albidus, Debaryomyces hansenii andRhodotorula rubra) was compared. All these yeast were isolatedfrom manne environments, but were able to grow in the absenceof salt and should therefore be considered as halotolerant strains.According to their specific cell growth rates at different saltconcentrations, these strains vary in their capacity to osmoticallyadjust to modifications in external salinity. Candida sp. appearsto be the most sensitive since the maximum salt concentrationat which it can grow is 1.54 mol 1-1 NaCl; however, it showedthe highest specific cell growth in the range of 0 to 1.54 mol1-1 NaCl. Aureobasidium pullulans, on the other hand, showedthe lowest specific growth rate, but the highest halotolerancerange from 0 to 5.13 mol 1-1 NaCl. Debaryomyces hansenii, incontrast, showed higher specific growth at this salinity rangeCryptococcus albidus var. albidus and Rhodotorula rubra showedsimilar specific cell growth rate values and halotolerance between0 and 2.45 mol 1-1 NaCl. The protein and carbohydrate contentof the biomass of the different yeast cells, as a result ofexternal salinity vanation, remained practically constant. Themost important effects of the increase in salt concentrationin the culture medium were the reduction of cell volume andthe accumulation of low-molecular-weight metabolites (LMWM).which appear to act as osmoregulators. Glycerol was found asthe major compatible solute in the different marine yeasts studiedherein with a total contribution of 64–96% of the internalcell osmolarity. Other LMWM, like carbohydrates and amino acids,contributed to a lesser extent to compensate for the rise inosmotic pressure promoted by the salinity of the external environment.  相似文献   
3.
Mangroves are highly productive marine ecosystems where bacteria (culturable and non-culturable) actively participate in biomineralization of organic matter and biotransformation of minerals. This study explores spatial and seasonal fluctuations of culturable heterotrophic bacteria and Vibrio spp. in the sediments of an intact mangrove ecosystem and determines the dominant environmental factors that govern these fluctuations. Sediment samples were collected monthly from three stations in the mangroves of Laguna de Balandra, Baja California Sur, Mexico, through an annual cycle. Physicochemical parameters included seawater temperature, salinity, and concentration of dissolved oxygen. Viable counts of culturable heterotrophic bacteria and Vibrio spp. were made. In one sample (March 2003), nutrient concentrations (ammonium, nitrites, nitrates, and phosphates), organic matter, pH and sediment texture were also determined. General cluster analyses, analysis of variance of specific variables, and several principal component analyses demonstrated that seawater temperature is the principal determinant of seasonal distribution of culturable heterotrophic bacteria and Vibrio spp. in mangrove sediments. Soil texture, concentration of nutrients, and organic matter concentration contribute to heterogenicity to a lesser extent. A large spatial variation in bacterial populations was observed over short distances ( approximately 1 m) in sampling areas within the same site. These analyses show that the culturable bacterial distribution in sediments of mangroves has high spatial and temporal heterogeneity.  相似文献   
4.
Genes encoding two major outer membrane proteins (OMPs) of the bacterial pathogen Aeromonas veronii, Omp38 and Omp48, were used to construct DNA vaccines. The protective effect of such vaccines against motile aeromonad septicaemia was evaluated in spotted sand bass (Paralabrax maculatofasciatus), an endemic species of the Mexican Northwest Pacific coast and a potential resource for the aquaculture industry. Weak protein expression, as determined by immunoblotting, was observed after transfection of eukaryotic cells with the DNA vaccines. Fish immunized with a single intramuscular injection of 20 microg of the omp38 and omp48 DNA vaccines showed slightly, but significantly elevated serum antibody levels 4 and 6 weeks after vaccination, compared to fish vaccinated with the control plasmid pcDNA3.1. Spotted sand bass vaccinated with the omp38 and omp48 DNA vaccines and challenged with A. veronii by intraperitoneal route recorded a relative percent survival (RPS) between 50 and 60%. Histopathological signs of motile aeromonad septicaemia were observed in around 40% of omp38 and omp48-vaccinated fish and 80% of pcDNA3.1-vaccinated control fish. The results indicate that P. maculatofasciatus vaccinated with a single dose of DNA plasmids encoding the major OMPs from A. veronii shows partial protection against infection and mortality by A. veronii experimental infection.  相似文献   
5.
S-Adenosylmethionine (SAM, AdoMet) is the most important methyl donor used for synthesis of nucleic acids, phospholipids, creatine, and polyamines and for methylation of many bioactive molecules. The metabolic response of the lung to oxidative stress of hyperoxia requires increased RNA and protein synthesis for energy metabolism, growth arrest, and antioxidant defense. We studied the production of SAM and other aspects of methionine metabolism in lung epithelial cells exposed to hyperoxia. Human lung epithelial-like (A549) and primary small airway epithelial (SAE) cells were exposed to normoxia (21% O(2)) or hyperoxia (95% O(2)). Cell methionine and S-adenosylmethionine content increased in response to hyperoxia in SAE and A549 cells. Because methionine adenosyl transferase (MAT) is the rate-limiting enzyme of the pathway, we examined the expression of a lung epithelial isoform of MAT 2A in hyperoxia. Western blots revealed a novel MAT 2A isoform expressed in both cell types, with a lower molecular mass than that described in Jurkat cells. Cloning and sequencing of the MAT 2A cDNA revealed one silent nucleotide substitution compared to that expressed in Jurkat. The lower mass of MAT 2A in both lung epithelial cells indicated that the absence of the major posttranslational modification of MAT 2A found in Jurkat. MAT 2A protein progressively increased during hyperoxic exposure in both transformed and primary lung epithelium. Increased flux of (13)C-labeled methionine to S-adenosylhomocysteine (SAH) in A549 demonstrated that SAM's methyl group was utilized, and increased formation of cystathionine indicated that at least part of SAM generated was directed toward cysteine/GSH in the transsulfuration pathway. These results indicate activation of MAT 2A and the transmethylation pathway in the metabolic response to hyperoxia in lung epithelium.  相似文献   
6.
After an ischemic episode, reperfusion causes profound oxidative stress in the vasculature of the afflicted tissue/organ. The dysregulated accumulation of reactive oxygen species (ROS), such as superoxide, has been closely linked to the production and release of proinflammatory mediators, a profound increase in adhesion molecule expression by the vascular endothelium, and infiltration of neutrophils during ischemia-reperfusion (I/R). Superoxide dismutase (SOD) has been shown to protect tissues and organs against I/R-induced injury; however, the drug had to be continuously perfused or kidneys had to be occluded to prevent clearance. We used intravital microscopy, a system that allowed us to visualize neutrophil-endothelial interactions within the mesenteric postcapillary venules of cats subjected to I/R and tested the hypothesis that I/R-induced neutrophil recruitment was inhibited by treatment with SOD2/3. SOD2/3 is a chimeric fusion gene product that contains the mature SOD2 as well as the COOH-terminal "tail" of SOD3 and, unlike the three naturally occurring SODs (SOD1, SOD2, and SOD3), which bear a net negative charge at pH 7.4, SOD2/3 is positively charged and physiologically stable. Our results suggest that not only does SOD2/3 have a much greater efficacy in vivo than the native human SOD2, but its administration prevents I/R-induced neutrophil-endothelial cell interactions and microvascular dysfunction. Moreover, our data support the hypothesis that reactive oxidants mediate I/R-induced injury and that the chimeric recombinant SOD2/3 has the potential to be a therapeutic agent against this debilitating illness.  相似文献   
7.
Manganese superoxide dismutase (Mn-SOD), a critical mitochondrial antioxidant enzyme, becomes inactivated and nitrated in vitro and potentially in vivo by peroxynitrite. Since peroxynitrite readily reacts with transition metal centers, we assessed the role of the manganese ion in the reaction between peroxynitrite and Mn-SOD. Peroxynitrite reacts with human recombinant and Escherichia coli Mn-SOD with a second order rate constant of 1.0 +/- 0.2 x 10(5) and 1.4 +/- 0.2 x 10(5) m(-)1 s(-)1 at pH 7.47 and 37 degrees C, respectively. The E. coli apoenzyme, obtained by removing the manganese ion from the active site, presents a rate constant <10(4) m(-)1 s(-)1 for the reaction with peroxynitrite, whereas that of the manganese-reconstituted apoenzyme (apo/Mn) was comparable to that of the holoenzyme. Peroxynitrite-dependent nitration of 4-hydroxyphenylacetic acid was increased 21% by Mn-SOD. The apo/Mn also promoted nitration, but the apo and the zinc-substituted apoenzyme (apo/Zn) enzymes did not. The extent of tyrosine nitration in the enzyme was also affected by the presence and nature (i.e. manganese or zinc) of the metal center in the active site. For comparative purposes, we also studied the reaction of peroxynitrite with low molecular weight complexes of manganese and zinc with tetrakis-(4-benzoic acid) porphyrin (tbap). Mn(tbap) reacts with peroxynitrite with a rate constant of 6.8 +/- 0.1 x 10(4) m(-)1 s(-)1 and maximally increases nitration yields by 350%. Zn(tbap), on the other hand, affords protection against nitration. Our results indicate that the manganese ion in Mn-SOD plays an important role in the decomposition kinetics of peroxynitrite and in peroxynitrite-dependent nitration of self and remote tyrosine residues.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号