首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2007年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Congenital nevi develop before birth and sometimes cover large areas of the body. They are presumed to arise from the acquisition of a gene mutation in an embryonic melanocyte that becomes trapped in the dermis during development. Mice bearing the Cdk4R24C::Tyr‐NRASQ61K transgenes develop congenital nevus‐like lesions by post‐natal day 10, from melanocytes escaping the confines of hair follicles. We interbred these mice with the collaborative cross (CC), a resource that enables identification of modifier genes for complex diseases (those where multiple genes are involved). We examined variation in nevus cell density in 66 CC strains and mapped a large‐effect quantitative trait locus (QTL) controlling nevus cell density to murine chromosome 9. The best candidate for a gene that exacerbates congenital nevus development in the context of an NRAS mutation is Cdon, a positive regulator of sonic hedgehog (Shh) that is expressed mainly in keratinocytes.  相似文献   
2.
The recent application of genome-wide, single nucleotide polymorphism (SNP) microarrays to investigate DNA copy number aberrations in cancer has provided unparalleled sensitivity for identifying genomic changes. In some instances the complexity of these changes makes them difficult to interpret, particularly when tumour samples are contaminated with normal (stromal) tissue. Current automated scoring algorithms require considerable manual data checking and correction, especially when assessing uncultured tumour specimens. To address these limitations we have developed a visual tool to aid in the analysis of DNA copy number data. Simulated DNA Copy Number (SiDCoN) is a spreadsheet-based application designed to simulate the appearance of B-allele and logR plots for all known types of tumour DNA copy number changes, in the presence or absence of stromal contamination. The system allows the user to determine the level of stromal contamination, as well as specify up to 3 different DNA copy number aberrations for up to 5000 data points (representing individual SNPs). This allows users great flexibility to assess simple or complex DNA copy number combinations. We demonstrate how this utility can be used to estimate the level of stromal contamination within tumour samples and its application in deciphering the complex heterogeneous copy number changes we have observed in a series of tumours. We believe this tool will prove useful to others working in the area, both as a training tool, and to aid in the interpretation of complex copy number changes.  相似文献   
3.
4.
We report on a systematic analysis of genotype-specific melanocyte (MC) UVR responses in transgenic mouse melanoma models along with tumour penetrance and comparative histopathology. pRb or p53 pathway mutations cooperated with NrasQ61K to transform MCs. We previously reported that MCs migrate from the follicular outer root sheath into the epidermis after neonatal UVR. Here, we found that Arf or p53 loss markedly diminished this response. Despite this, mice carrying these mutations developed melanoma with very early age of onset after neonatal UVR. Cdk4R24C did not affect the MC migration. Instead, independent of UVR exposure, interfollicular dermal MCs were more prevalent in Cdk4R24C mice. Subsequently, in adulthood, these mutants developed dermal MC proliferations reminiscent of superficial congenital naevi. Two types of melanoma were observed in this model. The location and growth pattern of the first was consistent with derivation from the naevi, while the second appeared to be of deep dermal origin. In animals carrying the Arf or p53 defects, no naevi were detected, with all tumours ostensibly skipping the benign precursor stage in progression.  相似文献   
5.
We previously noted that melanomas developing in Cdk4R24C/R24C::Tyr‐NRAS, Arf?/?::Tyr‐NRAS and Trp53F/F::Tyr‐Cre(ER)::Tyr‐NRAS mice exhibited differences in behaviour in vivo. We investigated this phenomenon using global gene expression profiling of lesions from the respective genotypes. While those from the Cdk4‐ and Arf‐mutant mice exhibited similar profiles, the Trp53F/F::Tyr‐Cre(ER)::Tyr‐NRAS melanomas were strikingly different, showing relative down‐regulation of melanocyte‐related genes, and up‐regulation of genes related to neural differentiation. Specifically, they highly expressed genes representative of the myelin‐producing peripheral oligodendrite (Schwann cell) lineage, although histopathologically the lesions did not exhibit the classical features of schwannoma. As Schwann cell precursors can be a cellular origin of melanocytes, it is unsurprising that plasticity with respect to melanocyte‐neural differentiation can occur in melanoma. What is surprising is the genotype proclivity. Comparison of gene expression signatures revealed that melanomas from the Trp53‐mutant mice show significant similarities with a subset of aggressive human melanomas with relatively low levels of MITF.  相似文献   
6.
Twenty three new species of Exocelina Broun, 1886 from New Guinea are described herein: Exocelina bewaniensis sp. n., Exocelina bismarckensis sp. n., Exocelina craterensis sp. n., Exocelina gorokaensis sp. n., Exocelina herowana sp. n., Exocelina jimiensis sp. n., Exocelina kisli sp. n., Exocelina ksionseki sp. n., Exocelina lembena sp. n., Exocelina mantembu sp. n., Exocelina michaelensis sp. n., Exocelina pinocchio sp. n., Exocelina pseudoastrophallus sp. n., Exocelina pseudobifida sp. n., Exocelina pseudoedeltraudae sp. n., Exocelina pseudoeme sp. n., Exocelina sandaunensis sp. n., Exocelina simbaiarea sp. n., Exocelina skalei sp. n., Exocelina tabubilensis sp. n., Exocelina tariensis sp. n., Exocelina vovai sp. n., and Exocelina wannangensis sp. n. All of them have been found to belong to the Exocelina ekari-group. An identification key to all known species of the group is provided, and important diagnostic characters (habitus, color, male antennae, protarsomeres 4–5, median lobes, and parameres) are illustrated. Data on the distribution of the new species and some already described species are given.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号