首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38219篇
  免费   3149篇
  国内免费   2041篇
  2023年   397篇
  2022年   907篇
  2021年   1813篇
  2020年   1105篇
  2019年   1454篇
  2018年   1388篇
  2017年   1017篇
  2016年   1436篇
  2015年   2101篇
  2014年   2480篇
  2013年   2826篇
  2012年   3189篇
  2011年   2860篇
  2010年   1716篇
  2009年   1496篇
  2008年   1850篇
  2007年   1641篇
  2006年   1479篇
  2005年   1261篇
  2004年   1100篇
  2003年   960篇
  2002年   883篇
  2001年   641篇
  2000年   560篇
  1999年   592篇
  1998年   372篇
  1997年   358篇
  1996年   370篇
  1995年   349篇
  1994年   330篇
  1993年   243篇
  1992年   367篇
  1991年   288篇
  1990年   242篇
  1989年   226篇
  1988年   156篇
  1987年   168篇
  1986年   128篇
  1985年   130篇
  1984年   127篇
  1983年   108篇
  1982年   107篇
  1981年   90篇
  1980年   115篇
  1979年   78篇
  1978年   84篇
  1977年   80篇
  1976年   69篇
  1974年   68篇
  1973年   82篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
White‐sand forests are patchily distributed ecosystems covering just 5% of Amazonia that host many specialist species of birds not found elsewhere, and these forests are threatened due to their small size and human exploitation of sand for construction projects. As a result, many species of birds that are white‐sand specialists are at risk of extinction, and immediate conservation action is paramount for their survival. Our objective was to evaluate current survey methods and determine the relative effect of the size of patches of these forests on the presence or absence of white‐sand specialists. Using point counts and autonomous recorders, we surveyed avian assemblages occupying patches of white‐sand forest in the Peruvian Amazon in April 2018. Overall, we detected 126 species, including 21 white‐sand forest specialists. We detected significantly more species of birds per survey point with autonomous recorders than point counts. We also found a negative relationship between avian species richness and distance from the edge of patches of white‐sand forest, but a significant, positive relationship when only counting white‐sand specialists. Although we detected more species with autonomous recorders, point counts were more effective for detecting canopy‐dwelling passerines. Therefore, we recommend that investigators conducting surveys for rare and patchily distributed species in the tropics use a mixed‐method approach that incorporates both autonomous recorders and visual observation. Finally, our results suggest that conserving large, continuous patches of white‐sand forest may increase the likelihood of survival of species of birds that are white‐sand specialists.  相似文献   
3.
4.
5.
Inhibitory pathways are an essential component in the function of the neocortical microcircuitry. Despite the relatively small fraction of inhibitory neurons in the neocortex, these neurons are strongly activated due to their high connectivity rate and the intricate manner in which they interconnect with pyramidal cells (PCs). One prominent pathway is the frequency-dependent disynaptic inhibition (FDDI) formed between layer 5 PCs and mediated by Martinotti cells (MCs). Here, we show that simultaneous short bursts in four PCs are sufficient to exert FDDI in all neighboring PCs within the dimensions of a cortical column. This powerful inhibition is mediated by few interneurons, leading to strongly correlated membrane fluctuations and synchronous spiking between PCs simultaneously receiving FDDI. Somatic integration of such inhibition is independent and electrically isolated from monosynaptic excitation formed between the same PCs. FDDI is strongly shaped by I(h) in PC dendrites, which determines the effective integration time window for inhibitory and excitatory inputs. We propose a key disynaptic mechanism by which brief bursts generated by a few PCs can synchronize the activity in the pyramidal network.  相似文献   
6.
Age impacts alloimmunity. Effects of aging on T‐cell metabolism and the potential to interfere with immunosuppressants have not been explored yet. Here, we dissected metabolic pathways of CD4+ and CD8+ T cells in aging and offer novel immunosuppressive targets. Upon activation, CD4+ T cells from old mice failed to exhibit adequate metabolic reprogramming resulting into compromised metabolic pathways, including oxidative phosphorylation (OXPHOS) and glycolysis. Comparable results were also observed in elderly human patients. Although glutaminolysis remained the dominant and age‐independent source of mitochondria for activated CD4+ T cells, old but not young CD4+ T cells relied heavily on glutaminolysis. Treating young and old murine and human CD4+ T cells with 6‐diazo‐5‐oxo‐l‐norleucine (DON), a glutaminolysis inhibitor resulted in significantly reduced IFN‐γ production and compromised proliferative capacities specifically of old CD4+ T cells. Of translational relevance, old and young mice that had been transplanted with fully mismatched skin grafts and treated with DON demonstrated dampened Th1‐ and Th17‐driven alloimmune responses. Moreover, DON diminished cytokine production and proliferation of old CD4+ T cells in vivo leading to a significantly prolonged allograft survival specifically in old recipients. Graft prolongation in young animals, in contrast, was only achieved when DON was applied in combination with an inhibition of glycolysis (2‐deoxy‐d‐glucose, 2‐DG) and OXPHOS (metformin), two alternative metabolic pathways. Notably, metabolic treatment had not been linked to toxicities. Remarkably, immunosuppressive capacities of DON were specific to CD4+ T cells as adoptively transferred young CD4+ T cells prevented immunosuppressive capacities of DON on allograft survival in old recipients. Depletion of CD8+ T cells did not alter transplant outcomes in either young or old recipients. Taken together, our data introduce an age‐specific metabolic reprogramming of CD4+ T cells. Targeting those pathways offers novel and age‐specific approaches for immunosuppression.  相似文献   
7.
Phase-sensitive two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 in aqueous deuterium oxide solution at four mixing times were quantified to give all nonoverlapping cross-peak intensities. A structural model for [d(GGTATACC)]2 was built in which the GG- and -CC moieties were in the B-DNA form, while the middle -TATA- moiety was in the wrinkled-D form (BDB model). This model was subjected to energy refinement by molecular mechanics calculations with the program AMBER. Counterions (Na+) were added to neutralize the charges, and water molecules were placed bridging across the minor groove. A complete relaxation matrix analysis was used to calculate two-dimensional nuclear Overhauser effect spectra of [d(GGTATACC)]2 from the above models (before and after energy refinement) and from four other [d(GGTATACC)]2 structural models: regular A, crystalline A, regular B, and energy-minimized B. Among them, the energy-minimized BDB model yielded a set of theoretical spectra that gave the best fit to the experimental spectra. It was also the energetically most stable. Therefore, it is a good representation of the ensemble- and time-averaged structure of the octamer in solution. This model has backbone torsion angles similar to those of B-form DNA in the GG- and -CC moieties and torsion angles similar to those of wrinkled D form DNA in the -TATA- moiety. The base stacking and base pairing are not interrupted at the junctions between the two structural moieties. Its minor groove is narrower than that of B DNA, and the solvent-accessible surface of the minor groove forms a closed hydration tunnel in the middle -TATA- segment.  相似文献   
8.
9.
10.
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.Subject terms: Hepatotoxicity, Sepsis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号