首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   5篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   4篇
  2004年   7篇
  2003年   1篇
  2002年   1篇
  1994年   1篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Progress towards understanding the molecular basis of cellulolysis by Clostridium cellulolyticm was obtained through the study of the first cellulolysis defective mutant strain, namely cipCMut1. In this mutant, a 2 659 bp insertion element, disrupts the cipC gene at the sequence encoding the seventh cohesin of the scaffoldin CipC. cipC is the first gene in a large 'cel' gene cluster, encoding several enzymatic subunits of the cellulosomes, including the processive cellulase Cel48F, which is the major component. Physiological and biochemical studies showed that the mutant strain was affected in cellulosome synthesis and severely impaired in its ability to degrade crystalline cellulose. It produced small amounts of a truncated CipC protein (P120), which had functional cohesin domains and assembled complexes which did not contain any of the enzymes encoded by genes of the 'cel' cluster. The mutant cellulolytic system was mainly composed of three proteins designated P98, P105 and P125. Their N-termini did not match any of the known cellulase sequences from C. cellulolyticum. A large amount of entire CipC produced in the cipCMut1 strain by trans-complementation with plasmid pSOScipC did not restore the cellulolytic phenotype, in spite of the assembly of a larger amount of complexes. The complexes produced in the mutant and complemented strains contained at least 12 different dockerin-containing proteins encoded by genes located outside of the 'cel' cluster. The disturbances observed in the mutant and trans-complemented strains were the result of a strong polar effect resulting from the cipC gene disruption. In conclusion, this study provided genetic evidence that the cellulases encoded by the genes located in the 'cel' cluster are essential for the building of cellulosomes efficient in crystalline cellulose degradation.  相似文献   
2.
The sequence of human urotensin II (UII) has been recently established as H-Glu-Thr-Pro-Asp-Cys-Phe-Trp-Lys-Tyr-Cys-Val-OH, and it has been reported that UII is the most potent mammalian vasoconstrictor peptide identified so far. A series of UII analogues was synthesized, and the contractile activity of each compound was studied in vitro using de-endothelialised rat aortic rings. Replacement of each amino acid by an L-alanine or by a D-isomer showed that the N- and C-terminal residues flanking the cyclic region of the amidated peptide were relatively tolerant to substitution. Conversely, replacement of any residue of the cyclic region significantly reduced the contractile activity of the molecule. The octapeptide UII(4-11) was 4 times more potent than UII, indicating that the C-terminal region of the molecule possesses full biological activity. Alanine or D-isomer substitutions in UII(4-11) or in UII(4-11)-NH2, respectively, showed a good correlation with the results obtained for UII-NH2. Disulfide bridge disruption or replacement of the cysteine residues by their D-enantiomers markedly reduced the vasoconstrictor effect of UII and its analogues. In contrast, acetylation of the N-terminal residue of UII and UII-NH2 enhanced the potency of the peptide. Finally, monoiodination of the Tyr6 residue in UII(4-11) increased by 5 fold the potency of the peptide in the aortic ring bioassay. This structure-activity relationship study should provide useful information for the rational design of selective and potent UII receptor agonists and antagonists.  相似文献   
3.
The gene man5K encoding the mannanase Man5K from Clostridium cellulolyticum was cloned alone or as an operon with the gene cipC1 encoding a truncated scaffoldin (miniCipC1) of the same origin in the solventogenic Clostridium acetobutylicum. The expression of the heterologous gene(s) was under the control of a weakened thiolase promoter Pthl. The recombinant strains of the solventogenic bacterium were both found to secrete active Man5K in the range of milligrams per liter. In the case of the strain expressing only man5K, a large fraction of the recombinant enzyme was truncated and lost the N-terminal dockerin domain, but it remained active towards galactomannan. When man5K was coexpressed with cipC1 in C. acetobutylicum, the recombinant strain secreted almost exclusively full-length mannanase, which bound to the scaffoldin miniCipC1, thus showing that complexation to the scaffoldin stabilized the enzyme. The secreted heterologous complex was found to be functional: it binds to crystalline cellulose via the carbohydrate binding module of the miniscaffoldin, and the complexed mannanase is active towards galactomannan. Taken together, these data show that C. acetobutylicum is a suitable host for the production, assembly, and secretion of heterologous minicellulosomes.  相似文献   
4.
During the course of our studies on the structure-function relationship of cellulosomes, we were interested in converting the free cellulase system of the aerobic bacterium, Thermobifida fusca, to a cellulosomal system. For this purpose, the cellulose-binding modules (CBM) of two T. fusca family-6 cellulases, endoglucanase Cel6A and exoglucanase Cel6B, were replaced by divergent dockerin modules. Thus far, family-6 cellulases have not been shown to be members of natural cellulosome systems. The resultant chimaeric proteins, 6A-c and t-6B, respectively, were purified and found to interact specifically and stoichiometrically with their corresponding cohesin modules, indicating their suitability for use as components in 'designer cellulosomes'. Both chimaeric enzymes showed somewhat decreased but measurable levels of activity on carboxymethyl cellulose, consistent with the known endo- and exo-glucanase character of the parent enzymes. The activity of 6A-c on phosphoric acid swollen cellulose was also consistent with that of the wild-type endoglucanase Cel6A. The startling finding of the present research was the extent of degradation of this substrate by the chimaeric enzyme t-6B. Wild-type exoglucanase Cel6B exhibited very low activity on this substrate, while the specific activity of t-6B was 14-fold higher than the parent enzyme.  相似文献   
5.
6.
To cost-efficiently produce biofuels, new methods are needed to convert lignocellulosic biomass into fermentable sugars. One promising approach is to degrade biomass using cellulosomes, which are surface-displayed multicellulase-containing complexes present in cellulolytic Clostridium and Ruminococcus species. In this study we created cellulolytic strains of Bacillus subtilis that display one or more cellulase enzymes. Proteins containing the appropriate cell wall sorting signal are covalently anchored to the peptidoglycan by coexpressing them with the Bacillus anthracis sortase A (SrtA) transpeptidase. This approach was used to covalently attach the Cel8A endoglucanase from Clostridium thermocellum to the cell wall. In addition, a Cel8A-dockerin fusion protein was anchored on the surface of B. subtilis via noncovalent interactions with a cell wall-attached cohesin module. We also demonstrate that it is possible to assemble multienzyme complexes on the cell surface. A three-enzyme-containing minicellulosome was displayed on the cell surface; it consisted of a cell wall-attached scaffoldin protein noncovalently bound to three cellulase-dockerin fusion proteins that were produced in Escherichia coli. B. subtilis has a robust genetic system and is currently used in a wide range of industrial processes. Thus, grafting larger, more elaborate minicellulosomes onto the surface of B. subtilis may yield cellulolytic bacteria with increased potency that can be used to degrade biomass.  相似文献   
7.
The genome of Clostridium cellulolyticum encodes 13 GH9 enzymes that display seven distinct domain organizations. All but one contain a dockerin module and were formerly detected in the cellulosomes, but only three of them were previously studied (Cel9E, Cel9G, and Cel9M). In this study, the 10 uncharacterized GH9 enzymes were overproduced in Escherichia coli and purified, and their activity pattern was investigated in the free state or in cellulosome chimeras with key cellulosomal cellulases. The newly purified GH9 enzymes, including those that share similar organization, all exhibited distinct activity patterns, various binding capacities on cellulosic substrates, and different synergies with pivotal cellulases in mini-cellulosomes. Furthermore, one enzyme (Cel9X) was characterized as the first genuine endoxyloglucanase belonging to this family, with no activity on soluble and insoluble celluloses. Another GH9 enzyme (Cel9V), whose sequence is 78% identical to the cellulosomal cellulase Cel9E, was found inactive in the free and complexed states on all tested substrates. The sole noncellulosomal GH9 (Cel9W) is a cellulase displaying a broad substrate specificity, whose engineered form bearing a dockerin can act synergistically in minicomplexes. Finally, incorporation of all GH9 cellulases in trivalent cellulosome chimera containing Cel48F and Cel9G generated a mixture of heterogeneous mini-cellulosomes that exhibit more activity on crystalline cellulose than the best homogeneous tri-functional complex. Altogether, our data emphasize the importance of GH9 diversity in bacterial cellulosomes, confirm that Cel9G is the most synergistic GH9 with the major endoprocessive cellulase Cel48F, but also identify Cel9U as an important cellulosomal component during cellulose depolymerization.  相似文献   
8.
ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of “safe-food” strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils.  相似文献   
9.
The secretion of large heterologous cellulases by Clostridium acetobutylicum was formerly shown to be deleterious. To circumvent this issue, various scaffoldins'' modules were grafted at their N termini. Family 3a cellulose binding module combined with an X2 module(s) was found to trigger the secretion of Clostridium cellulolyticum cellulases by the solventogenic bacterium.  相似文献   
10.
The kinetics of photobleaching and formation of photoproducts upon irradiation (735 nm) of 5,10,15,20-tetrakis(m-hydroxyphenyl)bacteriochlorin (m-THPBC) in phosphate buffer saline (PBS) supplemented with human serum albumin (HSA) were studied by means of absorption and steady-state fluorescence spectroscopy. Measurements were performed either immediately after the dye was dissolved in the HSA solution (0 h) or after six hours incubation in the HSA solution (6 h). Spectroscopic studies indicated that the dye was mainly present as aggregates in freshly prepared solutions, whereas incubation favored monomerisation. Irrespective to incubation time, the rates of photobleaching obtained by fluorescence measurements were higher than those obtained from absorbance measurements. Photobleaching of freshly prepared m-THPBC can be described by a single exponential decay, while the absorbance and fluorescence decays of the incubated dye solutions better fit a bi-exponential decay. Two photobleaching rates probably reflect differences in the photosensitivity of monomer (bound to proteins) and aggregated (non-bound) forms. Irradiation of the freshly prepared m-THPBC solution led to phototransformation of 50% of the bleached m-THPBC into 5,10,15,20-tetrakis(m-hydroxyphenyl)chlorin (m-THPC), a clinically used second generation photosensitizer. For irradiation 6 h after dissolving m-THPBC, different kinetics of m-THPC formation were found. A rapid decrease in concentration of m-THPBC was accompanied by a slow formation of m-THPC. The quantum yield of this process was small since only 5% of m-THPBC was transformed to m-THPC. The kinetics characteristics of m-THPBC photobleaching reported in the present study, together with the different kinetics of photoproduct formation during m-THPBC photobleaching, may provide important indications in the m-THPBC-based PDT dosimetry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号