首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.

Our ability to predict the outcome of invasion declines rapidly as non-native species progress through intertwined ecological barriers to establish and spread in recipient ecosystems. This is largely due to the lack of systemic knowledge on key processes at play as species establish self-sustaining populations within the invaded range. To address this knowledge gap, we present a mathematical model that captures the eco-evolutionary dynamics of native and non-native species interacting within an ecological network. The model is derived from continuous-trait evolutionary game theory (i.e., Adaptive Dynamics) and its associated concept of invasion fitness which depicts dynamic demographic performance that is both trait mediated and density dependent. Our approach allows us to explore how multiple resident and non-native species coevolve to reshape invasion performance, or more precisely invasiveness, over trait space. The model clarifies the role of specific traits in enabling non-native species to occupy realised opportunistic niches. It also elucidates the direction and speed of both ecological and evolutionary dynamics of residing species (natives or non-natives) in the recipient network under different levels of propagule pressure. The versatility of the model is demonstrated using four examples that correspond to the invasion of (i) a horizontal competitive community; (ii) a bipartite mutualistic network; (iii) a bipartite antagonistic network; and (iv) a multi-trophic food web. We identified a cohesive trait strategy that enables the success and establishment of non-native species to possess high invasiveness. Specifically, we find that a non-native species can achieve high levels of invasiveness by possessing traits that overlap with those of its facilitators (and mutualists), which enhances the benefits accrued from positive interactions, and by possessing traits outside the range of those of antagonists, which mitigates the costs accrued from negative interactions. This ‘central-to-reap, edge-to-elude’ trait strategy therefore describes the strategic trait positions of non-native species to invade an ecological network. This model provides a theoretical platform for exploring invasion strategies in complex adaptive ecological networks.

  相似文献   
3.

Background

In Madagascar, very little is known about the etiology and prevalence of acute respiratory infections (ARIs) in a rural tropical area. Recent data are needed to determine the viral and atypical bacterial etiologies in children with defined clinical manifestations of ARIs.

Methods

During one year, we conducted a prospective study on ARIs in children between 2 to 59 months in the community hospital of Ampasimanjeva, located in the south-east of Madagascar. Respiratory samples were analyzed by multiplex real-time RT-PCR, including 18 viruses and 2 atypical bacteria. The various episodes of ARI were grouped into four clinical manifestations with well-documented diagnosis: “Community Acquired Pneumonia”(CAP, group I), “Other acute lower respiratory infections (Other ALRIs, group II)”, “Upper respiratory tract infections with cough (URTIs with cough, group III)”and “Upper respiratory tract infections without cough (URTIs without cough, group IV)”.

Results

295 children were included in the study between February 2010 and February 2011. Viruses and/or atypical bacteria respiratory pathogens were detected in 74.6% of samples, the rate of co-infection was 27.3%. Human rhinovirus (HRV; 20.5%), metapneumovirus (HMPV A/B, 13.8%), coronaviruses (HCoV, 12.5%), parainfluenza virus (HPIV, 11.8%) and respiratory syncytial virus A and B (RSV A/B, 11.8%) were the most detected. HRV was predominantly single detected (23.8%) in all the clinical groups while HMPV A/B (23.9%) was mainly related to CAP (group I), HPIV (17.3%) to the “Other ALRIs” (group II), RSV A/B (19.5%) predominated in the group “URTIs with cough” (group III) and Adenovirus (HAdV, 17.8%) was mainly detected in the “without cough” (group IV).

Interpretation

This study describes for the first time the etiology of respiratory infections in febrile children under 5 years in a malaria rural area of Madagascar and highlights the role of respiratory viruses in a well clinically defined population of ARIs.  相似文献   
4.
Biological invasion remains a major threat to biodiversity in general and a disruptor to mutualistic interactions in particular. While a number of empirical studies have directly explored the role of invasion in mutualistic pollination networks, a clear picture is yet to emerge and a theoretical model for comprehension still lacking. Here, using an eco‐evolutionary model of bipartite mutualistic networks with trait‐mediated interactions, we explore invader trait, propagule pressure, and network features of recipient community that contribute importantly to the success and impact of an invasion. High level of invasiveness is observed when invader trait differs from those of the community average, and level of interaction generalization equals to that of the community average. Moreover, multiple introductions of invaders with declining propagules enhance invasiveness. Surprisingly, the most successful invader is not always the one having the biggest impact on the recipient community. The network structure of recipient community, such as nestedness and modularity, is not a primary indicator of its invasibility; rather, the invasibility is best correlated with measurements of network stability such as robustness, resilience, and disruptiveness (a measure of evolutionary instability). Our model encompasses more general scenarios than previously studied in predicting invasion success and impact in mutualistic networks, and our results highlight the need for coupling eco‐evolutionary processes to resolve the invasion dilemma.  相似文献   
5.
6.
The structure of pollination networks, particularly its nestedness, contain important information on network assemblages. However, there is still limited understanding of the mechanisms underlying nested pollination network structures. Here, we investigate the role of adaptive interaction switching (AIS), island area, isolation, age and sampling effort in explaining the nestedness of pollination networks across ten Galápagos Islands. The AIS algorithm is inspired by Wallace's elimination of the unfit, where a species constantly replaces its least profitable mutualistic partner with a new partner selected at random. To explain network structures, we first use a dynamic model that includes functional response of pollination and AIS, with only species richness and binary connectance as input (hereafter the AIS model). Thereafter, other explanatory variables (isolation, area, age and sampling effort) were added to the model. In four out of ten islands, the pollination network was significantly nested, and predictions from the AIS model correlated with observed structures, explaining 69% variation in nestedness. Overall, in terms of independent contribution from hierarchical partitioning of variation in observed nestedness, the AIS model predictions contributed the most (37%), followed by sampling effort (28%) and island area (22%), with only trivial contributions from island isolation and age. Therefore, adaptive switching of biotic interactions seems to be key to ensure network function, with island biogeographic factors being only secondary. Although large islands could harbour more diverse assemblages and thus foster more nested structures, sufficient sampling proves to be essential for detecting non‐random network structures.  相似文献   
7.
8.
The success of a biological invasion is context dependent, and yet two key concepts—the invasiveness of species and the invasibility of recipient ecosystems—are often defined and considered separately. We propose a framework that can elucidate the complex relationship between invasibility and invasiveness. It is based on trait-mediated interactions between species and depicts the response of an ecological network to the intrusion of an alien species, drawing on the concept of community saturation. Here, invasiveness of an introduced species with a particular trait is measured by its per capita population growth rate when the initial propagule pressure of the introduced species is very low. The invasibility of the recipient habitat or ecosystem is dependent on the structure of the resident ecological network and is defined as the total width of an opportunity niche in the trait space susceptible to invasion. Invasibility is thus a measure of network instability. We also correlate invasibility with the asymptotic stability of resident ecological network, measured by the leading eigenvalue of the interaction matrix that depicts trait-based interaction intensity multiplied by encounter rate (a pairwise product of propagule pressure of all members in a community). We further examine the relationship between invasibility and network architecture, including network connectance, nestedness and modularity. We exemplify this framework with a trait-based assembly model under perturbations in ways to emulate fluctuating resources and random trait composition in ecological networks. The maximum invasiveness of a potential invader (greatest intrinsic population growth rate) was found to be positively correlated with invasibility of the recipient ecological network. Additionally, ecosystems with high network modularity and high ecological stability tend to exhibit high invasibility. Where quantitative data are lacking we propose using a qualitative interaction matrix of the ecological network perceived by a potential invader so that the structural network stability and invasibility can be estimated from the literature or from expert opinion. This approach links network structure, invasiveness and invasibility in the context of trait-mediated interactions, such as the invasion of insects into mutualistic and antagonistic networks.  相似文献   
9.
10.
Our planet is changing at paces never observed before. Species extinction is happening at faster rates than ever, greatly exceeding the five mass extinctions in the fossil record. Nevertheless, our lives are strongly based on services provided by ecosystems, thus the responses to global change of our natural heritage are of immediate concern. Understanding the relationship between complexity and stability of ecosystems is of key importance for the maintenance of the balance of human growth and the conservation of all the natural services that ecosystems provide. Mathematical network models can be used to simplify the vast complexity of the real world, to formally describe and investigate ecological phenomena, and to understand ecosystems propensity of returning to its functioning regime after a stress or a perturbation. The use of ecological-network models to study the relationship between complexity and stability of natural ecosystems is the focus of this review. The concept of ecological networks and their characteristics are first introduced, followed by central and occasionally contrasting definitions of complexity and stability. The literature on the relationship between complexity and stability in different types of models and in real ecosystems is then reviewed, highlighting the theoretical debate and the lack of consensual agreement. The summary of the importance of this line of research for the successful management and conservation of biodiversity and ecosystem services concludes the review.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号