首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  2022年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2008年   2篇
  2005年   2篇
  2002年   4篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1991年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Electric field-induced charge recombination in Photosystem II (PS II) was studied in osmotically swollen spinach chloroplasts (blebs) by measurement of the concomitant chlorophyll luminescence emission (electroluminescence). A pronounced dependence on the redox state of the two-electron gate QB was observed and the earlier failure to detect it is explained. The influence of the QB/QB oscillation on electroluminescence was dependent on the redox state of the oxygen evolving complex; at times around one millisecond after flash illumination a large effect was observed in the states S2 and S3, but not in the state S4 (actually Z+S3). The presence of the oxidized secondary electron donor, tyrosine Z+, appeared to prevent expression of the QB/QB effect on electroluminescence, possibly because this effect is primarily due to a shift of the redox equilibrium between Z/Z+ and the oxygen evolving complex.Abbreviations BSA bovine serum albumin - EDTA ethylene-diaminetetraacetic acid - EL electroluminescence - FCCP carbonylcyanide p-trifluoromethyloxyphenyl-hydrazone - HEPESI 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - I primary electron acceptor - MOPS 3-(N-morpholino) propane sulfonic acid - P680 primary electron donor of Photosystem II - P700 primary electron donor of Photosystem I - QA and QB secondary and tertiary electron acceptors of Photosystem II - Z secondary electron donor (D1 Tyr 161)  相似文献   
2.
A mechanism commonly suggested to explain the persistence of color polymorphisms in animals is negative frequency‐dependent selection. It could result from a social dominance advantage to rare morphs. We tested for this in males of red and blue color morphs of the Lake Victoria cichlid, Pundamilia. Earlier work has shown that males preferentially attack the males of their own morph, while red males are more likely to win dyadic contests with blue males. In order to study the potential contribution of both factors to the morph co‐existence, we manipulated the proportion of red and blue males in experimental assemblages and studied its effect on social dominance. We then tried to disentangle the effects of the own‐morph attack bias and social dominance of red using simulations. In the experiment, we found that red males were indeed socially dominant to the blue ones, but only when rare. However, blue males were not socially dominant when rare. The simulation results suggest that an own‐morph attack bias reduces the social dominance of red males when they are more abundant. Thus, there is no evidence of symmetric negative frequency‐dependent selection acting on social dominance, suggesting that additional fitness costs to the red morph must explain their co‐existence.  相似文献   
3.
4.
Models of swarming (based on avoidance, alignment and attraction) produce patterns of behaviour also seen in schools of fish. However, the significance of such similarities has been questioned, because some model assumptions are unrealistic [e.g. speed in most models is constant with random error, the perception is global and the size of the schools that have been studied is small (up to 128 individuals)]. This criticism also applies to our former model, in which we demonstrated the emergence of two patterns of spatial organization, i.e. oblong school form and high frontal density, which are supposed to function as protection against predators. In our new model we respond to this criticism by making the following improvements: individuals have a preferred ‘cruise speed’ from which they can deviate in order to avoid others or to catch up with them. Their range of perception is inversely related to density, with which we take into account that high density limits the perception of others that are further away. Swarm sizes range from 10 to 2000 individuals. The model is three‐dimensional. Further, we show that the two spatial patterns (oblong shape and high frontal density) emerge by self‐organization as a side‐effect of coordination at two speeds (of two or four body lengths per second) for schools of sizes above 20. Our analysis of the model leads to the development of a new set of hypotheses. If empirical data confirm these hypotheses, then in a school of real fish these patterns may arise as a side‐effect of their coordination in the same way as in the model.  相似文献   
5.
Single behavioural differences between egalitarian and despotic animal societies are often assumed to reflect specific adaptations. However, in the present paper, I will show in an individual-orientated model, how many behavioural traits of egalitarian and despotic virtual societies arise as emergent characteristics. The artificial entities live in a homogeneous world and only aggregate, and upon meeting one another and may perform dominance interactions in which the effects of winning and losing are self-reinforcing. The behaviour of these entities is studied in a similar way to that of real animals. It will be shown that by varying the intensity of aggression only, one may switch from egalitarian to despotic virtual societies. Differences between the two types of society appear to correspond closely to those between despotic and egalitarian macaque species in the real world. In addition, artificial despotic societies show a clearer spatial centrality of dominants and, counter-intuitively, more rank overlap between the sexes than the egalitarian ones. Because of the correspondence with patterns in real animals, the model makes it worthwhile comparing despotic and egalitarian species for socio-spatial structure and rank overlap too. Furthermore, it presents us with parsimonious hypotheses which can be tested in real animals for patterns of aggression, spatial structure and the distribution of social positive and sexual behaviour.  相似文献   
6.
7.
Differences between related species are usually explained as separate adaptations produced by individual selection. I discuss in this paper how related species, which differ in many respects, may evolve by a combination of individual selection, self-organization, and group-selection, requiring an evolutionary adaptation of only a single trait. In line with the supposed evolution of despotic species of macaques, we take as a starting point an ancestral species that is egalitarian and mildly aggressive. We suppose it to live in an environment with abundant food and we put the case that, if food becomes scarce and more clumped, natural selection at the level of the individual will favor individuals with a more intense aggression (implying, for instance, biting and fierce fighting). Using an individual-centered model, called DomWorld, I show what happens when the intensity of aggression increases. In DomWorld, group life is represented by artificial individuals that live in a homogeneous world. Individuals are extremely simple: all they do is flock together and, upon meeting one another, they may perform dominance interactions in which the effects of winning and losing are self-reinforcing. When the intensity of aggression in the model is increased, a complex feedback between the hierarchy and spatial structure results; via self-organization, this feedback causes the egalitarian society to change into a despotic one. The many differences between the two types of artificial society closely correspond to those between despotic and egalitarian macaques in the real world. Given that, in the model, the organization changes as a side effect of the change of one single trait proper to an egalitarian society, in the real world a despotic society may also have arisen as a side effect of the mutation of a single trait of an egalitarian species. If groups with different intensities of aggression evolve in this way, they will also have different gradients of hierarchy. When food is scarce, groups with the steepest hierarchy may have the best chance to survive, because at least a small number of individuals in such a group may succeed in producing offspring, whereas in egalitarian societies every individual is at risk of being insufficiently fed to reproduce. Therefore, intrademic group selection (selection within an interbreeding group) may have contributed to the evolution of despotic societies.  相似文献   
8.
Moving in a group while avoiding collisions with group members causes internal dynamics in the group. Although these dynamics have recently been measured quantitatively in starling flocks (Sturnus vulgaris), it is unknown what causes them. Computational models have shown that collective motion in groups is likely due to attraction, avoidance and, possibly, alignment among group members. Empirical studies show that starlings adjust their movement to a fixed number of closest neighbours or topological range, namely 6 or 7 and assume that each of the three activities is done with the same number of neighbours (topological range). Here, we start from the hypothesis that escape behavior is more effective at preventing collisions in a flock when avoiding the single closest neighbor than compromising by avoiding 6 or 7 of them. For alignment and attraction, we keep to the empirical topological range. We investigate how avoiding one or several neighbours affects the internal dynamics of flocks of starlings in our computational model StarDisplay. By comparing to empirical data, we confirm that internal dynamics resemble empirical data more closely if flock members avoid merely their single, closest neighbor. Our model shows that considering a different number of interaction partners per activity represents a useful perspective and that changing a single parameter, namely the number of interaction partners that are avoided, has several effects through selforganisation.  相似文献   
9.
Scrub jays are thought to use many tactics to protect their caches. For instance, they predominantly bury food far away from conspecifics, and if they must cache while being watched, they often re-cache their worms later, once they are in private. Two explanations have been offered for such observations, and they are intensely debated. First, the birds may reason about their competitors' mental states, with a 'theory of mind'; alternatively, they may apply behavioral rules learned in daily life. Although this second hypothesis is cognitively simpler, it does seem to require a different, ad-hoc behavioral rule for every caching and re-caching pattern exhibited by the birds. Our new theory avoids this drawback by explaining a large variety of patterns as side-effects of stress and the resulting memory errors. Inspired by experimental data, we assume that re-caching is not motivated by a deliberate effort to safeguard specific caches from theft, but by a general desire to cache more. This desire is brought on by stress, which is determined by the presence and dominance of onlookers, and by unsuccessful recovery attempts. We study this theory in two experiments similar to those done with real birds with a kind of 'virtual bird', whose behavior depends on a set of basic assumptions about corvid cognition, and a well-established model of human memory. Our results show that the 'virtual bird' acts as the real birds did; its re-caching reflects whether it has been watched, how dominant its onlooker was, and how close to that onlooker it has cached. This happens even though it cannot attribute mental states, and it has only a single behavioral rule assumed to be previously learned. Thus, our simulations indicate that corvid re-caching can be explained without sophisticated social cognition. Given our specific predictions, our theory can easily be tested empirically.  相似文献   
10.
A consistent conclusion in reconciliation research is that animals that reconcile are likely to have strong social bonds. This has led to the hypothesis that reconciliation occurs most often between valuable social partners. We tested this hypothesis in a group of Assamese macaques (Macaca assamensis) living near a temple in Assam, India. Using focal sample and ad libitum data collection, we recorded the occurrence of reconciliation, grooming, and agonistic aiding, and the outcomes of approach. We used matrix association methods (TauKr correlation) to correlate reconciliation with grooming, aiding, and approach outcome. Females reconciled more often with females with which they had stronger grooming and aiding relationships. The correlation between reconciliation and aiding was significant for support to the aggressor and the victim. In contrast, no such correlations with reconciliation were found for males. This study provides evidence that females reconcile most often with valuable and compatible social partners. The results do not support the relationship-quality hypothesis for males, and we suggest that future studies give more consideration to the possibility that males reconcile for reasons other than to repair relationships with valuable partners.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号