首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
1.
2.
An important class of organoselenium compounds‐α‐isoselenocyanato esters 4 hasbeen prepared by a reaction of α‐isocyano esters with elemental selenium powder. The reaction issimple, rapid and all the isoselenocyanates havebeen isolated as stable ones after chromatographic purification. These hitherto unreported classes of molecules would be useful building blocks for the preparation of variety of selenium containing peptidomimetics. In this study, the utility of the title molecules in the preparation of selenoureidopeptidomimetics 6, unsymmetrical selenoureas 8 and selenohydantoins 10 isdemonstrated. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
3.
The expression of type 1 fimbriae in Escherichia coli is phase variable, with cells switching between fimbriate (ON) and afimbriate (OFF) phases. The phase variation is dependent on the orientation of a 314 bp DNA element (the switch) that undergoes DNA inversion. DNA inversion requires either fimB or fimE, site-specific recombinases that differ in both specificity and activity. Whereas fimB promotes recombination with little orientational bias, fimE promotes recombination in the ON-to-OFF direction exclusively. In wild-type cells, fimE activity predominates and, hence, most bacteria are afimbriate. Here, it is shown that fimE specificity is caused by two different, but complementary, mechanisms. First, FimE shows a strong preference for the switch in the ON orientation as a substrate for recombination. Differences in the nucleotide sequence of the recombinase binding sites is a key factor in determining FimE specificity, although one or more additional cis-active sites that flank the fim switch also appear to be involved. Secondly, the orientation of the switch controls fimE in cis, most probably to control recombinase expression.  相似文献   
4.

Background

Monitoring cerebral saturation is increasingly seen as an aid to management of patients in the operating room and in neurocritical care. How best to manipulate cerebral saturation is not fully known. We examined cerebral saturation with graded changes in carbon dioxide tension while isoxic and with graded changes in oxygen tension while isocapnic.

Methodology/Principal Findings

The study was approved by the Research Ethics Board of the University Health Network at the University of Toronto. Thirteen studies were undertaken in healthy adults with cerebral oximetry by near infrared spectroscopy. End-tidal gas concentrations were manipulated using a model-based prospective end-tidal targeting device. End-tidal carbon dioxide was altered ±15 mmHg from baseline in 5 mmHg increments with isoxia (clamped at 110±4 mmHg). End-tidal oxygen was changed to 300, 400, 500, 80, 60 and 50 mmHg under isocapnia (37±2 mmHg). Twelve studies were completed. The end-tidal carbon dioxide versus cerebral saturation fit a linear relationship (R2 = 0.92±0.06). The end-tidal oxygen versus cerebral saturation followed log-linear behaviour and best fit a hyperbolic relationship (R2 = 0.85±0.10). Cerebral saturation was maximized in isoxia at end-tidal carbon dioxide of baseline +15 mmHg (77±3 percent). Cerebral saturation was minimal in isocapnia at an end-tidal oxygen tension of 50 mmHg (61±3 percent). The cerebral saturation during normoxic hypocapnia was equivalent to normocapnic hypoxia of 60 mmHg.

Conclusions/Significance

Hypocapnia reduces cerebral saturation to an extent equivalent to moderate hypoxia.  相似文献   
5.
Brown adipose tissue (BAT) thermogenesis occurs episodically in an ultradian manner approximately every 80-100 min during the waking phase of the circadian cycle, together with highly correlated increases in brain and body temperatures, suggesting that BAT thermogenesis contributes to brain and body temperature increases. We investigated this in conscious Sprague-Dawley rats by determining whether inhibition of BAT thermogenesis via blockade of beta-3 adrenoceptors with SR59230A interrupts ultradian episodic increases in brain and body temperatures and whether SR59230A acts on BAT itself or via sympathetic neural control of BAT. Interscapular BAT (iBAT), brain, and body temperatures, tail artery blood flow, and heart rate were measured in unrestrained rats. SR59230A (1, 5, or 10 mg/kg ip), but not vehicle, decreased iBAT, body, and brain temperatures in a dose-dependent fashion (log-linear regression P < 0.01, R(2) = 0.3, 0.4, and 0.4, respectively, n = 10). Ultradian increases in BAT, brain, and body temperature were interrupted by administration of SR59230A (10 mg/kg ip) compared with vehicle, resuming after 162 ± 24 min (means ± SE, n = 10). SR59230A (10 mg/kg ip) caused a transient bradycardia without any increase in tail artery blood flow. In anesthetized rats, SR59230A reduced cooling-induced increases in iBAT temperature without affecting cooling-induced increases in iBAT sympathetic nerve discharge. Inhibition of BAT thermogenesis by SR59230A, thus, reflects direct blockade of beta-3 adrenoceptors in BAT. Interruption of episodic ultradian increases in body and brain temperature by SR59230A suggests that BAT thermogenesis makes a substantial contribution to these increases.  相似文献   
6.
7.
8.
The site-specific DNA inversion that controls phase variation of type 1 fimbriation in E. coli is catalysed by two recombinases, FimB and FimE. Efficient inversion by either recombinase also requires the leucine-responsive regulatory protein (Lrp). In addition, FimB recombination is stimulated by the integration host factor (IHF). The effect of IHF on FimE inversion has not previously been reported. Here it is shown that IHF stimulates FimE recombination; in strain MG1655, mutants containing lesions in either the α ( ihfA ) or β ( ihfB ) subunits of IHF show a marked decrease in both FimB- (100-fold) and FimE (15 000-fold)-promoted switching. IHF is shown to bind with high affinity to sites both adjacent to (site I) and within (site II) the fim invertible element. Furthermore, mutations in site I or site II that lower the affinity of IHF binding in vitro were found to lower the frequency of FimE and/or FimB recombination in vivo . Although site I and site II mutations in combination have an effect on FimB-promoted switching comparable to that of IHF knockout mutations (100-fold), the cis site mutations have a much less marked effect (100-fold) on FimE-promoted switching.  相似文献   
9.
ExoU is a potent Pseudomonas aeruginosa cytotoxin translocated into host cells by the type III secretion system. A comparison of genomes of various P. aeruginosa strains showed that that the ExoU determinant is found in the same polymorphic region of the chromosome near a tRNA(Lys) gene, suggesting that exoU is a horizontally acquired virulence determinant. We used yeast recombinational cloning to characterize four distinct ExoU-encoding DNA segments. We then sequenced and annotated three of these four genomic regions. The sequence of the largest DNA segment, named ExoU island A, revealed many plasmid- and genomic island-associated genes, most of which have been conserved across a broad set of beta- and gamma-Proteobacteria. Comparison of the sequenced ExoU-encoding genomic islands to the corresponding PAO1 tRNA(Lys)-linked genomic island, the pathogenicity islands of strain PA14, and pKLC102 of clone C strains allowed us to propose a mechanism for the origin and transmission of the ExoU determinant. The evolutionary history very likely involved transposition of the ExoU determinant onto a transmissible plasmid, followed by transfer of the plasmid into different P. aeruginosa strains. The plasmid subsequently integrated into a tRNA(Lys) gene in the chromosome of each recipient, where it acquired insertion sequences and underwent deletions and rearrangements. We have also applied yeast recombinational cloning to facilitate a targeted mutagenesis of ExoU island A, further demonstrating the utility of the specific features of the yeast capture vector for functional analyses of genes on large horizontally acquired genetic elements.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号