首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1302篇
  免费   102篇
  国内免费   1篇
  2021年   7篇
  2019年   9篇
  2018年   16篇
  2017年   9篇
  2016年   25篇
  2015年   44篇
  2014年   47篇
  2013年   64篇
  2012年   73篇
  2011年   76篇
  2010年   57篇
  2009年   42篇
  2008年   78篇
  2007年   45篇
  2006年   62篇
  2005年   66篇
  2004年   51篇
  2003年   45篇
  2002年   46篇
  2001年   20篇
  2000年   21篇
  1999年   22篇
  1998年   23篇
  1997年   15篇
  1996年   18篇
  1995年   16篇
  1994年   16篇
  1993年   19篇
  1992年   23篇
  1991年   26篇
  1990年   19篇
  1989年   20篇
  1988年   19篇
  1987年   11篇
  1986年   15篇
  1985年   18篇
  1983年   8篇
  1982年   10篇
  1981年   13篇
  1980年   9篇
  1979年   8篇
  1978年   11篇
  1977年   15篇
  1976年   13篇
  1975年   14篇
  1974年   11篇
  1973年   11篇
  1971年   10篇
  1970年   7篇
  1969年   13篇
排序方式: 共有1405条查询结果,搜索用时 15 毫秒
1.
2.
Experiment I used non-naive pigeons having previously performed on both keypecking and treadlepressing Fixed Interval schedules. In condition IT, treadlepressing was reinforced on successive Fixed Interval 60 seconds, Fixed Time 60 seconds and Fixed Interval 60 seconds schedules. Subsequently (condition IK), the same subjects pecked a key on an identical schedule sequence (FI60, FT60, FI60). In Experiment II, separate groups of naïve subjects were assigned either to treadlepressing (condition IIT) or keypecking (condition IIK) and to the same schedule sequence (FI60, FT60, FI60). Treadle pressing and keypecking decreased greatly in Fixed Time schedules. Curvature indices, pauses and running rates were less sensitive than response rates to the switching from one schedule to the other. Experiments I and II yielded similar results, experimental history accounting only for minor differences. The results were discussed in relation to interspecies differences in the temporal regulation of behavior and operant versus respondent control of the response and schedule-induced behaviour.  相似文献   
3.
This paper describes the discovery of novel α-L-fucosidases and evaluation of their potential to catalyse the transglycosylation reaction leading to production of fucosylated human milk oligosaccharides. Seven novel α-L-fucosidase-encoding genes were identified by functional screening of a soil-derived metagenome library and expressed in E. coli as recombinant 6xHis-tagged proteins. All seven fucosidases belong to glycosyl hydrolase family 29 (GH 29). Six of the seven α-L-fucosidases were substrate-inhibited, moderately thermostable and most hydrolytically active in the pH range 6–7, when tested with para-nitrophenyl-α-L-fucopyranoside (pNP-Fuc) as the substrate. In contrast, one fucosidase (Mfuc6) exhibited a high pH optimum and an unusual sigmoidal kinetics towards pNP-Fuc substrate. When tested for trans-fucosylation activity using pNP-Fuc as donor, most of the enzymes were able to transfer fucose to pNP-Fuc (self-condensation) or to lactose. With the α-L-fucosidase from Thermotoga maritima and the metagenome-derived Mfuc5, different fucosyllactose variants including the principal fucosylated HMO 2’-fucosyllactose were synthesised in yields of up to ~6.4%. Mfuc5 was able to release fucose from xyloglucan and could also use it as a fucosyl-donor for synthesis of fucosyllactose. This is the first study describing the use of glycosyl hydrolases for the synthesis of genuine fucosylated human milk oligosaccharides.  相似文献   
4.
biuz aktuell     
  相似文献   
5.
Visual species identification of cetacean strandings is difficult, especially when dead specimens are degraded and/or species are morphologically similar. The two recognised pilot whale species (Globicephala melas and Globicephala macrorhynchus) are sympatric in the North Atlantic Ocean. These species are very similar in external appearance and their morphometric characteristics partially overlap; thus visual identification is not always reliable. Genetic species identification ensures correct identification of specimens. Here we have employed one mitochondrial (D-Loop region) and eight nuclear loci (microsatellites) as genetic markers to identify six stranded pilot whales found in Galicia (Northwest Spain), one of them of ambiguous phenotype. DNA analyses yielded positive amplification of all loci and enabled species identification. Nuclear microsatellite DNA genotypes revealed mixed ancestry for one individual, identified as a post-F1 interspecific hybrid employing two different Bayesian methods. From the mitochondrial sequence the maternal species was Globicephala melas. This is the first hybrid documented between Globicephala melas and G. macrorhynchus, and the first post-F1 hybrid genetically identified between cetaceans, revealing interspecific genetic introgression in marine mammals. We propose to add nuclear loci to genetic databases for cetacean species identification in order to detect hybrid individuals.  相似文献   
6.
In eubacterial and eukaryotic tRNAs specific for Asn, Asp, His and Tyr the modified deazaguanosinederivative queuosine occurs in position 34, the first position of the anticodon. Analysis of unfractionated tRNAs from wheat and from tobacco leaves shows that these tRNAs contain high amounts of guanosine (G) in place of queuosine (Q). This was measured by the exchange of G34 for [3H]guanine catalysed by the specific tRNA guanine transglycosylase from E. coli. Upon gel electrophoretic separation of the labeled tRNAs, seven Q-deficient tRNA species including isoacceptors are detectable. Two are identified as cytoplasmic tRNAsTyr and tRNAAsp and two represent chloroplast tRNATyr isoacceptors. In contrast to leaf cytoplasm and chloroplasts, wheat germ has low amounts of tRNAs with G34 in place of Q.A new enzymatic assay is described for quantitation of free queuine in cells and tissues. Analysis of queuine in plant tissues shows that wheat germ contains about 200 ng queuine per g wet weight. In wheat and tobacco leaves queuine is present, if at all, in amounts lower than 10 ng/g wet weight. The absence of Q in tRNAs from plant leaves is therefore caused by a deficiency of queuine. Tobacco cells cultivated in a synthetic medium without added queuine do not contain Q in tRNA, indicating that these rapidly growing cells do not synthesize queuine de novo.  相似文献   
7.
The interaction between rat mammary gland thioesterase II and fatty acid synthetase has been studied by a variety of physicochemical techniques. Pyrene-labeled thioesterase II does not exhibit increased fluorescence anisotropy when mixed with fatty acid synthetase, suggesting that the enzymes do not readily form a complex. Nevertheless, the functional interaction between the enzymes can be easily demonstrated by observing the hydrolysis, by unmodified thioesterase II, of acyl chains from their thioester linkage to the 4-phosphopantetheine of the fatty acid synthetase. This hydrolytic reaction is not inhibited even in the presence of a large excess of fatty acid synthetase with vacant 4'-phosphopantetheine thiols, indicating that interaction occurs only between thioesterase and fatty acid synthetase species which carry acyl chains on the 4'-phosphopantetheine thiols. A novel model system was devised which allowed us to explore the nature of the physical interaction between the two enzymes under conditions where the synthetase was actively engaged in acyl chain assembly. Fatty acid synthetase was treated with phenylmethanesulfonyl fluoride to inhibit its resident thioesterase activity, immobilized via a specific antibody to a column of Sepharose 4B, and exposed to the substrates required for acyl-enzyme assembly. When thioesterase II was introduced to the column, it passed through unretarded even though it efficiently catalyzed hydrolysis of the immobilized S-acyl synthetase en route. These results indicate that the two enzymes associate when an acyl chain is present on the synthetase and that they dissociate rapidly following completion of the catalytic process. Thus, the mammary system differs from that of the avian uropygial gland in which the two enzymes associate to form a stable complex even in the absence of substrates.  相似文献   
8.
Hydroxyl radicals (OH.) in free solution react with scavengers at rates predictable from their known second-order rate constants. However, when OH. radicals are produced in biological systems by metal-ion-dependent Fenton-type reactions scavengers do not always appear to conform to these established rate constants. The detector molecules deoxyribose and benzoate were used to study damage by OH. involving a hydrogen-abstraction reaction and an aromatic hydroxylation. In the presence of EDTA the rate constant for the reaction of scavengers with OH. was generally higher than in the absence of EDTA. This radiomimetic effect of EDTA can be explained by the removal of iron from the detector molecule, where it brings about a site-specific reaction, by EDTA allowing more OH. radicals to escape into free solution to react with added scavengers. The deoxyribose assay, although chemically complex, in the presence of EDTA appears to give a simple and cheap method of obtaining rate constants for OH. reactions that compare well with those obtained by using pulse radiolysis.  相似文献   
9.
Twelve of sixteen different cell types including fibroblasts and tumor cells were able to attach and spread on substrates of pepsin-solubilized or intact collagen VI, and on its triple helical domain. Attachment and spreading were independent of soluble mediator proteins (fibronectin, laminin) and collagen VI was distinct from collagens I, IV and V in the cells with which it interacted. Many of the same cells bound and spread on substrates prepared from unfolded α2(VI) and α3(VI) chains but not on the α1(VI) chain. The interactions with the chains were inhibited by low concentrations (10–100 μM) of synthetic RGDS and RGDT but not RGES peptides while the binding of cells to pepsin-solubilized collagen VI was more than 20-fold less sensitive to these peptides. The data incidate that cells have the ability to bind to collagen VI in a specific manner suggesting a similar function for collagen VI in situ.  相似文献   
10.
GST activities against 1-Chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) were measured in isolated and cultured adult rat hepatocytes. Within 24 h in culture, both GST activities decreased to about 70% and either stabilized at this level (CDNB) or recovered (DCNB) to the initial level. Use of hyaluronidase in addition to collagenase during the isolation of the cells strongly reduced both activities and its stimulation by various drugs for up to 168 h. The hormones insulin, glucagon, triiodothyronine, estradiol, testosterone, and progesterone did not affect GST activity, while dexamethasone showed some interference. In the presence of dexamethasone the activity against CDNB was mainly stimulated by the combination of methylcholanthrene (MC) and phenobarbital (PB) to about 260% within 168 h. The activity against DCNB was stimulated predominantly by MC alone reaching 170% after 168 h. Quantification of the GST subunits Ya, Yb1 and Yp by an ELISA technique revealed a strong decrease of Ya, a transient increase of Yb1 after 24 h followed by a moderate decrease, and a stable low level of the transformation marker Yp during cultivation. The level of Ya was markedly induced by PB, particularly in combination with MC. The level of Yb1 was equally induced by MC or PB with no synergistic effect. Yp was not affected by these drugs. None of the hormones affected the level of these GST subunits. These results indicate that the physiological type of regulation of the GSTs is maintained during primary culture and no signs of dedifferentiation or transformation are observed. Furthermore, they demonstrate that the interaction of drugs and hormones and their inducing potential can be efficiently studied in the cultured hepatocytes.Abbreviations ABTS 2,2-Azino-bis(3-ethylbenzthiazoline-6-sulfonate) - CDNB I-Chloro-2,4-dinitrobenzene - DCNB 1,2-dichloro-4-nitrobenzene; DEX, dexamethasone - DMSO dimethylsulfoxide - GST glutathione Stransferase - MC methylcholanthrene - N, NIC nicotinamide - -NF -naphthoflavone - PB phenobarbital - PBS phosphate buffered saline  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号