首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   3篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  1972年   1篇
  1968年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.  相似文献   
2.
In the hatchery-bred tambaqui Colossoma macropomum, spontaneous semen release does not occur, and hand-stripping produces reduced semen volume. The goal of this work is to evaluate the effects of hormonal induction with carp pituitary extract (CPE) on both qualitative (visual aspect, pH, motility, viability and morphological abnormalities) and quantitative (volume, concentration and number of spermatozoa per ejaculate) traits of tambaqui semen. Eleven males were treated with CPE (induced), and 11 were left untreated as a control (non-induced). All analysed parameters except motility and percentage of viable spermatozoa presented significant differences (p < 0.05) between the induced and non-induced treatments. CPE induction resulted in a 25-fold increase in semen volume and a 10-fold increase in the number of spermatozoa collected. However, both sperm concentration and the frequency of sperm with morphological abnormalities (commonly detached heads or bent tails) were significantly lower in CPE-induced fish. The hormonal induction of tambaqui males with CPE is efficient and positively influences some qualitative and quantitative properties of semen. Additionally, semen collection via gentle abdominal massage occurs more readily in CPE-induced fish.  相似文献   
3.
Although aromatic anticonvulsants are usually well tolerated, they can cause cutaneous adverse drug reactions in up to 10% of patients. The clinical manifestations of the antiepileptics-induced hypersensitivity reactions (AHR) vary from mild skin rashes to severe cutaneous drug adverse reactions which are related to high mortality and significant morbidity. Genetic polymorphisms in cytochrome P450 genes are associated with altered enzymatic activity and may contribute to the risk of AHR. Here we present a case-control study in which we genotyped SNPs of CYP2C19, 2C9 and 3A5 of 55 individuals with varying severities of AHR, 83 tolerant, and 366 healthy control subjects from São Paulo, Brazil. Clinical characterization was based on standardized scoring systems and drug patch test. All in vivo investigation followed the ENDA (European Network of Drug Allergy) recommendations. Genotype was determined by real time PCR using peripheral blood DNA as a template. Of all 504 subjects, 65% were females, 45% self-identified as Afro-American, 38% as Caucasian and 17% as having non-African mixed ascendancy. Amongst 55 subjects with AHR, 44 had severe cutaneous drug adverse reactions. Of the 46 drug patch tests performed, 29 (63%) were positive. We found a strong association between the absence of CYP3A5*3 and tolerant subjects when compared to AHR (p = 0.0002, OR = 5.28 [CI95% 2.09–14.84]). None of our groups presented positive association with CYP2C19 and 2C9 polymorphisms, however, both SNPs contributed to separation of cases and tolerants in a Classification and Regression Tree. Our findings indicate that drug metabolism genes can contribute in the tolerability of antiepileptics. CYP3A5*3 is the most prevalent CYP3A5 allele associated with reduced enzymatic function. The current study provides evidence that normal CYP3A5 activity might be a protective factor to aromatic antiepileptics-induced hypersensitivity reactions in Brazilian subjects.  相似文献   
4.
High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production.  相似文献   
5.
Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H2 and CO2 under aerobic conditions. Under conditions of nutrient imbalance, R. eutropha produces copious amounts of poly[(R)-3-hydroxybutyrate] (PHB). Its ability to utilize CO2 as a sole carbon source renders it an interesting new candidate host for the production of renewable liquid transportation fuels. We engineered R. eutropha for the production of fatty acid-derived, diesel-range methyl ketones. Modifications engineered in R. eutropha included overexpression of a cytoplasmic version of the TesA thioesterase, which led to a substantial (>150-fold) increase in fatty acid titer under certain conditions. In addition, deletion of two putative β-oxidation operons and heterologous expression of three genes (the acyl coenzyme A oxidase gene from Micrococcus luteus and fadB and fadM from Escherichia coli) led to the production of 50 to 65 mg/liter of diesel-range methyl ketones under heterotrophic growth conditions and 50 to 180 mg/liter under chemolithoautotrophic growth conditions (with CO2 and H2 as the sole carbon source and electron donor, respectively). Induction of the methyl ketone pathway diverted substantial carbon flux away from PHB biosynthesis and appeared to enhance carbon flux through the pathway for biosynthesis of fatty acids, which are the precursors of methyl ketones.  相似文献   
6.
Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.  相似文献   
7.

Background  

Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required.  相似文献   
8.
The objective of this study was to analyze the relevance of relationship information on the identification of low heritability quantitative trait loci (QTLs) from a genome-wide association study (GWAS) and on the genomic prediction of complex traits in human, animal and cross-pollinating populations. The simulation-based data sets included 50 samples of 1000 individuals of seven populations derived from a common population with linkage disequilibrium. The populations had non-inbred and inbred progeny structure (50 to 200) with varying number of members (5 to 20). The individuals were genotyped for 10,000 single nucleotide polymorphisms (SNPs) and phenotyped for a quantitative trait controlled by 10 QTLs and 90 minor genes showing dominance. The SNP density was 0.1 cM and the narrow sense heritability was 25%. The QTL heritabilities ranged from 1.1 to 2.9%. We applied mixed model approaches for both GWAS and genomic prediction using pedigree-based and genomic relationship matrices. For GWAS, the observed false discovery rate was kept below the significance level of 5%, the power of detection for the low heritability QTLs ranged from 14 to 50%, and the average bias between significant SNPs and a QTL ranged from less than 0.01 to 0.23 cM. The QTL detection power was consistently higher using genomic relationship matrix. Regardless of population and training set size, genomic prediction provided higher prediction accuracy of complex trait when compared to pedigree-based prediction. The accuracy of genomic prediction when there is relatedness between individuals in the training set and the reference population is much higher than the value for unrelated individuals.  相似文献   
9.
Of ten mushroom cultures investigated, only Agaricus campestris, Boletus indecisus, and Tricholoma nudum were capable of growing in submerged culture in medium of vinasse with added salts. Higher fermentative efficiencies were found under these conditions than in medium containing molasses or waste sulfite liquor. A. campestris showed a better capacity to produce protein but, since B. indecisus is capable of developing greater mycelium weight, its fermentative efficiencies are comparable. Both microorganisms could be grown in medium of vinasse with greatly varied amounts, producing higher mycelial weight in media with greater vinasse. The capacity of B. indecisus and A. campestris to utilize the noncarbohydrate fraction in total solids, instead of the total carbohydrates when they are in smaller amount, was observed in medium containing vinasse. B. indecisus and A. campestris were easily separated by filtration from the medium, although T. nudum was difficult to separate by this procedure. In experiments with A. campestris, the adaptative capacity of the organism to vinasse was demonstrated.  相似文献   
10.
Biological synthesis of therapeutic drugs beneficial for human health using microbes offers an alternative production strategy to the methods that are commonly employed such as direct extraction from source organisms or chemical synthesis. In this study, we evaluated the potential for yeast (Saccharomyces cerevisiae) to be used as a catalyst for the synthesis of tranilast and various tranilast analogs (cinnamoyl anthranilates). Several studies have demonstrated that these phenolic amides have antioxidant properties and potential therapeutic benefits including antiinflammatory, antiproliferative, and antigenotoxic effects. The few cinnamoyl anthranilates naturally produced in plants such as oats and carnations result from the coupling of various hydroxycinnamoyl-CoAs to anthranilic acid. In order to achieve the microbial production of tranilast and several of its analogs, we engineered a yeast strain to co-express a 4-coumarate/CoA ligase (4CL, EC 6.2.1.12) from Arabidopsis thaliana and a hydroxycinnamoyl/benzoyl-CoA/anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT, EC 2.3.1.144) from Dianthus caryophyllus. This modified yeast strain allowed us to produce tranilast and 26 different cinnamoyl anthranilate molecules within a few hours after exogenous supply of various combinations of cinnamic acids and anthranilate derivatives. Our data demonstrate the feasibility of rapidly producing a wide range of defined cinnamoyl anthranilates in yeast and underline a potential for the biological designed synthesis of naturally and non-naturally occurring molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号