首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2015年   1篇
  2014年   3篇
  2012年   4篇
  2007年   1篇
  2004年   2篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
2.
Parkinson disease is the second most common neurodegenerative disease. The molecular hallmark is the accumulation of proteinaceous inclusions termed Lewy bodies containing misfolded and aggregated α-synuclein. The molecular mechanism of clearance of α-synuclein aggregates was addressed using the bakers' yeast Saccharomyces cerevisiae as the model. Overexpression of wild type α-synuclein or the genetic variant A53T integrated into one genomic locus resulted in a gene copy-dependent manner in cytoplasmic proteinaceous inclusions reminiscent of the pathogenesis of the disease. In contrast, overexpression of the genetic variant A30P resulted only in transient aggregation, whereas the designer mutant A30P/A36P/A76P neither caused aggregation nor impaired yeast growth. The α-synuclein accumulation can be cleared after promoter shut-off by a combination of autophagy and vacuolar protein degradation. Whereas the proteasomal inhibitor MG-132 did not significantly inhibit aggregate clearance, treatment with phenylmethylsulfonyl fluoride, an inhibitor of vacuolar proteases, resulted in significant reduction in clearance. Consistently, a cim3-1 yeast mutant restricted in the 19 S proteasome regulatory subunit was unaffected in clearance, whereas an Δatg1 yeast mutant deficient in autophagy showed a delayed aggregate clearance response. A cim3-1Δatg1 double mutant was still able to clear aggregates, suggesting additional cellular mechanisms for α-synuclein clearance. Our data provide insight into the mechanisms yeast cells use for clearing different species of α-synuclein and demonstrate a higher contribution of the autophagy/vacuole than the proteasome system. This contributes to the understanding of how cells can cope with toxic and/or aggregated proteins and may ultimately enable the development of novel strategies for therapeutic intervention.  相似文献   
3.

Objective

To determine whether microbial contamination of door handles in two busy intensive care units and one high dependency unit was related to their design, location, and usage.

Design

Observational study of the number of viable bacteria on existing door handles of different design at defined entry/exit points with simultaneous data collection of who used these doors and how often.

Setting

Two busy specialised intensive care units and one high dependency unit in a tertiary referral NHS neurological hospital.

Main outcome measures

Surface bacterial density on door handles with reference to design, location, and intensity of use.

Results

We found a significant correlation between the frequency of movements through a door and the degree to which it was contaminated (p = <0.01). We further found that the door''s location, design and mode of use all influenced contamination. When compared to push plate designs, pull handles revealed on average a five fold higher level of contamination; lever handles, however, displayed the highest levels of bacterial contamination when adjusted for frequency of use. We also observed differences in contamination levels at doors between clinical areas, particularly between the operating theatres and one of the ICUs.

Conclusions

Door handles in busy, “real life” high acuity clinical environments were variably contaminated with bacteria, and the number of bacteria found related to design, location, mode and frequency of operation. Largely ignored issues of handle and environmental design can support or undermine strategies designed to limit avoidable pathogen transmission, especially in locations designed to define “thresholds” and impose physical barriers to pathogen transmission between clinical areas. Developing a multidisciplinary approach beyond traditional boundaries for purposes of infection control may release hitherto unappreciated options and beneficial outcomes for the control of at least some hospital acquired infections.  相似文献   
4.
Parkinson disease is associated with the progressive loss of dopaminergic neurons from the substantia nigra. The pathological hallmark of the disease is the accumulation of intracytoplasmic inclusions known as Lewy bodies that consist mainly of post-translationally modified forms of α-synuclein. Whereas phosphorylation is one of the major modifications of α-synuclein in Lewy bodies, sumoylation has recently been described. The interplay between α-synuclein phosphorylation and sumoylation is poorly understood. Here, we examined the interplay between these modifications as well as their impact on cell growth and inclusion formation in yeast. We found that α-synuclein is sumoylated in vivo at the same sites in yeast as in human cells. Impaired sumoylation resulted in reduced yeast growth combined with an increased number of cells with inclusions, suggesting that this modification plays a protective role. In addition, inhibition of sumoylation prevented autophagy-mediated aggregate clearance. A defect in α-synuclein sumoylation could be suppressed by serine 129 phosphorylation by the human G protein-coupled receptor kinase 5 (GRK5) in yeast. Phosphorylation reduced foci formation, alleviated yeast growth inhibition, and partially rescued autophagic α-synuclein degradation along with the promotion of proteasomal degradation, resulting in aggregate clearance in the absence of a small ubiquitin-like modifier. These findings suggest a complex interplay between sumoylation and phosphorylation in α-synuclein aggregate clearance, which may open new horizons for the development of therapeutic strategies for Parkinson disease.  相似文献   
5.
Augmentation of mitochondrial oxidative stress through activating a series of deadly events has implicated as the main culprit of arsenic toxicity and therapeutic approaches based on improving mitochondrial function hold a great promise for attenuating the arsenic-induced toxicity. Acetyl-l-carnitine (ALC) through balancing the coenzyme A (CoA)/acyl-CoA ratio plays an important role in mitochondrial metabolism and thereby can help protect hippocampal neurons from oxidative damage. In the present study, we aimed to explore the effect of arsenic interactions on the mitochondrial function in the hippocampus of rats. Rats were randomly divided into five groups of control (distilled water), sodium arsenite (NaAsO2, 20 mg/kg), and co-treatment of NaAsO2 with various doses of ALC in three groups (100, 200, 300 mg/kg) and were treated orally for 21 consecutive days. Our results point out that arsenic exposure caused oxidative stress in rats’ hippocampus, which led to the reactive oxygen species (ROS) generation, mitochondrial swelling, the collapse of the mitochondrial membrane potential, and release of cytochrome c. It also altered Bcl-2/Bax expression ratio and increased caspase-3 and caspase-9 activities. Furthermore, arsenic exposure via activation of NF-κB and microglia increased inflammation. ALC could concentration-dependently counteract the arsenic-induced oxidative stress, modulate the antioxidant defense capacity, and improve mitochondrial functions. In addition, ALC decreased the expression of both death-associated proteins and of inflammatory markers. These findings indicate that ALC improved the arsenic-induced hippocampal mitochondrial dysfunction which underlines the importance of ALC in providing a possible therapeutic strategy for the prevention of arsenic-induced neurodegeneration.  相似文献   
6.
7.
High levels of translational errors, both truncation and misincorporation in an Fc‐fusion protein were observed. Here, we demonstrate the impact of several commercially available codon optimization services, and compare to a targeted strategy. Using the targeted strategy, only codons known to have translational errors are modified. For an Fc‐fusion protein expressed in Escherichia coli, the targeted strategy, in combination with appropriate fermentation conditions, virtually eliminated misincorporation (proteins produced with a wrong amino acid sequence), and reduced the level of truncation. The use of full optimization using commercially available strategies reduced the initial errors, but introduced different misincorporations. However, truncation was higher using the targeted strategy than for most of the full optimization strategies. This targeted approach, along with monitoring of translation fidelity and careful attention to fermentation conditions is key to minimizing translational error and ensuring high‐quality expression. These findings should be useful for other biopharmaceutical products, as well as any other transgenic constructs where protein quality is important. Biotechnol. Bioeng. 2012; 109: 2770–2777. © 2012 Wiley Periodicals, Inc.  相似文献   
8.
The pore-forming protein perforin is a key component of mammalian cell-mediated immunity and essential to the pathway that allows elimination of virus-infected and transformed cells. Perforin activity has also been implicated in certain auto-immune conditions and therapy-induced conditions such as allograft rejection and graft versus host disease. An inhibitor of perforin activity could be used as a highly specific immunosuppressive treatment for these conditions, with reduced side-effects compared to currently accepted therapies. Previously identified first-in-class inhibitors based on a 2-thioxoimidazolidin-4-one core show suboptimal physicochemical properties and toxicity toward the natural killer (NK) cells that secrete perforin in vivo. The current benzenesulphonamide-based series delivers a non-toxic bioisosteric replacement possessing improved solubility.  相似文献   
9.
Persian oak (Quercus brantii Lindl.) is one of the most important woody species of the Zagros forests in Iran. Three molecular marker techniques: start codon targeted (SCoT), inter-simple sequence repeat (ISSR) and inter-retrotransposon amplified polymorphism (IRAP) markers were compared for fingerprinting of 125 individuals of this species collected from different geographical locations of north-west of Iran. A total of 233 bands were amplified by 18 ISSR primers, of which 224 (96.10%) were polymorphic, and 126 polymorphic bands (97.65%) were observed in 129 bands amplified by 10 IRAP primers. Besides, 118 bands were observed for all 10 SCoT primers, of which 113 were polymorphic (95.71%). Average polymorphism information content (PIC) for ISSR, IRAP and SCoT markers was 0.30, 0.32 and 0.38, respectively, and this revealed that SCoT markers were more informative than IRAP and ISSR for the assessment of diversity among individuals. Based on the three different molecular types, cluster analysis revealed that 125 individuals taken for the analysis can be divided into three distinct clusters. The Jaccard's genetic similarity based on the combined data ranged from 0.23 to 0.76. These results suggest that efficiency of SCoT, IRAP and ISSR markers was relatively the same in fingerprinting of individuals. All molecular marker types revealed a low genetic differentiation among populations, indicating the possibility of gene flow between the studied populations. These results have an important implication for Persian oak (Q. brantii) germplasm characterization, improvement, and conservation.  相似文献   
10.
Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson''s disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号